Neural Network学习笔记2
torch.nn:
Containers: 神经网络骨架
Convolution Layers 卷积层
Pooling Layers 池化层
Normalization Layers 正则化层
Non-linear Activations (weighted sum, nonlinearity) 非线性激活
Convolution Layers
Conv2d
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
in_channels= : 输入图像的通道数
out_channels= : 输出图象的通道数
kernel_size=3: 3x3的卷积核,会在训练过程中不断调整
stride: 卷积核滑动的步长
padding: 在图像的纵向和横向填充 ,填充的地方一般默认为0,这样卷积核可以划过更多地方
padding_mode=zeros: padding时的填充值
dilation: 卷积核的对应位
groups
bias:偏置
卷积过程:
经典vgg16的卷积过程:
推导padding等参数的公式:
import torch
import torchvision
from torch import nn
from torch.nn import Conv2dfrom torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("../dataset_transform",train=False, transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=64)class Zrf(nn.Module):def __init__(self):super(Zrf, self).__init__()self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)def forward(self, x):x = self.conv1(x)return x# 初始化网络
zrf = Zrf()
print(zrf)writer = SummaryWriter("conv2d")
step = 0
for data in dataloader:imgs, targets = dataoutput = zrf(imgs)print(imgs.shape)print(output.shape)# torch.Size([64, 3, 32, 32])writer.add_images("input_imgs", imgs, step)# torch.Size([64, 6, 30, 30]) ---> [xxx, 3, 30, 30]output = torch.reshape(output, (-1, 3, 30, 30))writer.add_images("output_imgs", output, step)step = step + 1
writer.close()
Pooling Layers
MaxPool2d
最大池化--->下采样(别称)
(池化层没有要优化的参数,只是形式上的卷积核)
kernel_size=3: 3x3的窗口,用来取最大值
stride: 窗口滑动的步长,默认值是kernel_size的大小
padding: 在图像的纵向和横向填充 ,填充的地方一般默认为0
dilation: 空洞卷积
return_indices: 通常来说不会用到
ceil_mode: 设置为True时,会使用ceil模式(不满3x3也取一个最大值)而不是floor模式(不满3x3就不取值 )
一般理解------ceil:向上取整,floor模式:向下取整
为什么要进行最大池化? 在保持数据特征的同时,减小数据量
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10(root="../dataset_transform", download=True, train=False, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64)# input = torch.tensor([[1, 2, 0, 3, 1],
# [0, 1, 2, 3, 1],
# [1, 2, 1, 0, 0],
# [5, 2, 3, 1, 1],
# [2, 1, 0, 1, 1]], dtype=torch.float32)
# input = torch.reshape(input, (-1, 1, 5, 5))
# print(input.shape)class Zrf(nn.Module):def __init__(self):super(Zrf, self).__init__()self.maxpool1 = MaxPool2d(kernel_size=3)def forward(self, x):output = self.maxpool1(x)return outputzrf = Zrf()
# output = zrf(input)
# print(output)
writer = SummaryWriter("log_maxpol")
step = 0
for data in dataloader:imgs, targets = datawriter.add_images("max_before", imgs, step)output = zrf(imgs)writer.add_images("max_afteer", output, step)step = step + 1
writer.close()
Non-linear Activations
Relu:大于0取原值,小于0取0
Sigmoid:常用激活函数
inplace参数
input = -1
Relu(input, inplace = True)
# 结果:input = 0input = -1
output = Relu(input, inplace = False)
# 结果:input = -1, output = 0
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterinput = torch.tensor([[1, -0.5],[-1, 3]])
input = torch.reshape(input, (-1, 1, 2, 2))# print(input.shape)dataset = torchvision.datasets.CIFAR10(root="../dataset_transform", download=True, train=False, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64)class Zrf(nn.Module):def __init__(self):super(Zrf, self).__init__()# self.relu1 = nn.ReLU()self.sigmoid1 = nn.Sigmoid()def forward(self, input):# output = self.relu1(input)output = self.sigmoid1(input)return output# zrf = Zrf()
# output = zrf(input)
# print(output)zrf = Zrf()writer = SummaryWriter("log_sigmoid")
step = 0
for data in dataloader:imgs, targets = datawriter.add_images("before_sigmoid", imgs, step)output = zrf(imgs)writer.add_images("after_sigmoid", output, step)step = step + 1writer.close()
线性层以及其他层介绍
Linear Layers
线性层,目的是变换特征维度,参数:in_features, out_features, bias (bool)
in_features:
out_features:
bias (bool):偏置
计算过程中的权重k和偏置b要按照一定条件进行调整和优化
Normalization Layers
正则化层:对输入进行正则化(注意:正则化不是归一化),有助于梯度下降,解决过拟合
num_feature(int): 输入图像的通道数层
affine(bool): 当设置为True时,该模块具有可学习的仿射参数,一般默认为True
Recurrent Layers
循环网络,多用于文字处理中
Transformers Layers
。。。21年大火
Dropout Layers
在训练过程中,会随机的把输入图像(tensor数据类型)中的元素以p的概率变成0
主要是为了防止过拟合
Sparse Layers
主要用于自然语言处理
Distance Functions
计算两个值之间的误差
Loss Functions
计算损失
相关文章:

Neural Network学习笔记2
torch.nn: Containers: 神经网络骨架 Convolution Layers 卷积层 Pooling Layers 池化层 Normalization Layers 正则化层 Non-linear Activations (weighted sum, nonlinearity) 非线性激活 Convolution Layers Conv2d torch.nn.Conv2d(in_channels, out_channels, ke…...
用@Value注解为bean的属性赋值
1.Value注解 Value注解的源码,如下所示 Target({ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETER, ElementType.ANNOTATION_TYPE}) Retention(RetentionPolicy.RUNTIME) Documented public interface Value {String value(); }从Value注解的源码中…...

拨云见日:深入理解 HTML 解析器与有限状态机
文章目录 参考描述状态机状态机有限状态机与无限状态机有限状态机与自动售货机无限状态机与计算器 HTML 解析器HTML 解析器HTML 与有限状态机 HTML 解析器的常见状态初始状态DOCTYPE 状态注释状态标签状态开始标签状态属性状态属性名状态属性值状态 结束标签状态自闭和标签状态…...

Java线程池及其实现原理
线程池概述 线程池(Thread Pool)是一种基于池化思想管理线程的工具,经常出现在多线程服务器中,如MySQL。 线程过多会带来额外的开销,其中包括创建销毁线程的开销、调度线程的开销等等,同时也降低了计算机…...

进程替换函数组介绍exec*
目录 前述 execl execlp execle execv execvp execvpe 前述 介绍后缀的意义: l (list):表示参数采用列表。 v(vector):参数同数组表示。 p(path):自…...

欧科云链OKLink:2023年4月安全事件盘点
一、基本信息 2023年4月安全事件共造约6000万美金的损失,与上个月相比,损失金额有所降落,但安全事件数量依旧不减。其中,Yearn Finance因参数配置错误,导致了1000多万美金的损失。同时,有一些已经出现过的…...
KubeVirt备份与还原方案【翻译】
KubeVirt备份与还原方案【翻译】 ref:https://github.com/kubevirt/kubevirt/blob/main/docs/backup-restore-integration.md 备份 为所有必需的k8s资源构建依赖关系图冻结应用程序pvc数据快照解冻应用程序将所有必需的k8s资源定义拷贝到一个共享的存储位置(可选…...

使用PyQt5设计一款简单的计算器
目录 一、环境配置: 二、代码实现 三、主程序 四、总结 本文使用PyQt5设计一款简单的计算器,可以通过界面交互实现加减乘除的功能,希望能够给初学者一些帮助。主要涉及的知识点有类的定义与初始化、类的成员函数、pyqt5的信号与槽函数等。…...

Htop使用说明
目录 引言 什么是htop htop安装 htop界面介绍 htop功能介绍 引言 我们使用服务器的时候常常需要关注下自己的程序资源占用情况,htop就是一种互动式的进程查查看器,整齐用下来感觉比top的逼格高,造作可视化都更方便些,我觉得还…...
PostgreSQL Linux安装
安装依赖: sudo yum -y install readline-devel zlib-devel 安装Postgres: ssh hadoophadoop001 #下载Postgres wget https://ftp.postgresql.org/pub/source/v14.2/postgresql-14.2.tar.gz tar -zxvf postgresql-14.2.tar.gz -C /data #编译前准备 /dat…...
亚商投资顾问 早餐FM/0509车辆电动化
01/亚商投资顾问 早间导读 1.上交所拟于5月11日举办“发现央企投资价值,促进央企估值回归”交流会 2.监管部门十方面举措加强房地产经纪行业管理 3.广东:推动城市公共服务及货运配送车辆电动化替代 4.昆山两楼盘因大幅降价被暂停网签:降幅…...

AI绘画天花板——Midjourney注册使用保姆级教程(5月5日验证有效)
大家好,我是可夫小子,关注AIGC、读书和自媒体。解锁更多ChatGPT、AI绘画玩法。加我,备注:aigc,拉你进群。 现在市面上AI绘图大概有三大阵营:Midjourney、Stable Diffusion,还有一个就是OpenAI实…...
学习笔记(2)项目结构描述 - manifest.json和pages.json
目录 1,manifest.json2,pages.json2.1,pages2.2,globalStyle2.3,tabBar 1,manifest.json 官方详情 uni-app 的 appid 由 DCloud 云端分配,主要用于 DCloud 相关的云服务,请勿自行修…...

vector、deque、list相关知识点
vector erase返回迭代器指向删除元素后的元素insert返回迭代器指插入的元素reserve只给容器底层开指定大小内存空间,并不添加新元素 deque 底层数据结构 动态开辟的二维数组,一维数组从2开始,以2倍方式扩容,每次扩容和&#x…...

多维时序 | MATLAB实现基于VMD-SSA-LSSVM、SSA-LSSVM、VMD-LSSVM、LSSVM的多变量时间序列预测对比
多维时序 | MATLAB实现基于VMD-SSA-LSSVM、SSA-LSSVM、VMD-LSSVM、LSSVM的多变量时间序列预测对比 目录 多维时序 | MATLAB实现基于VMD-SSA-LSSVM、SSA-LSSVM、VMD-LSSVM、LSSVM的多变量时间序列预测对比预测效果基本介绍程序设计学习总结参考资料 预测效果 基本介绍 多维时序 …...

设计模式——适配器模式(类适配器、对象适配器)
是什么? 我们平时的有线耳机接口分为USB的和Type-C的接口,但是手机的耳机插口却只有一个,像华为的耳机插口现在基本都是Type-c的,那如果我们现在只有USB接口的耳机怎么办呢,这个时候就需要使用到一个转换器,…...

iOS开发多target
场景 背景:设想一下有一个场景,一个业务分为多种身份,他们大部分功能是相同的,但是也有自己的差异性。这种情况,想要构建出不同身份的APP。你会怎么做??? 当然,你可以拷贝一份代码出来,给项目重新命名。这样做的好处是,他们互相不会冲突,不用去关心是否有逻辑的冲…...
100种思维模型之每日评估思维模型-58
曾子曰:吾日三省吾省,为人谋而不忠乎?与朋友交不信乎?传不习乎? 曾国藩,坚持每日写复盘日记,最后他用自己的实践经历向我们证明:一个智商很平庸、出身很普通且有着各种毛病的人&…...
libreoffice api
libreOffice API是用于访问libreOffice的编程接口。可以使用libreOffice API创建、打开、修改和打印libreOffice文档。 LibreOffice API支持Basic、Java、C/C、Javascript、Python语言。 这是通过一种称为通用网络对象 (Universal Network Objects, UNO) 的技术实现的ÿ…...

全网最火,Web自动化测试驱动模型详全,一语点通超实用...
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 自动化测试模型&a…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...

视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...

基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
ubuntu22.04 安装docker 和docker-compose
首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...

渗透实战PortSwigger Labs指南:自定义标签XSS和SVG XSS利用
阻止除自定义标签之外的所有标签 先输入一些标签测试,说是全部标签都被禁了 除了自定义的 自定义<my-tag onmouseoveralert(xss)> <my-tag idx onfocusalert(document.cookie) tabindex1> onfocus 当元素获得焦点时(如通过点击或键盘导航&…...