当前位置: 首页 > news >正文

Python+Yolov5舰船侦测识别

程序示例精选

Python+Yolov5舰船侦测识别

如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助!

前言

这篇博客针对<<Python+Yolov5舰船侦测识别>>编写代码,代码整洁,规则,易读。 学习与应用推荐首选。


文章目录

一、所需工具软件

二、使用步骤

        1. 引入库

        2. 代码实现

        3. 运行结果

三、在线协助

一、所需工具软件

1. Python,Pycharm

2. Yolov5

二、使用步骤

1.引入库

import argparse
import time
from pathlib import Pathimport cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import randomfrom models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized

2. 代码实现

代码如下:

def detect(save_img=False):source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_sizewebcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))# Directoriessave_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir# Initializeset_logging()device = select_device(opt.device)half = device.type != 'cpu'  # half precision only supported on CUDA# Load modelmodel = attempt_load(weights, map_location=device)  # load FP32 modelstride = int(model.stride.max())  # model strideimgsz = check_img_size(imgsz, s=stride)  # check img_sizeif half:model.half()  # to FP16# Second-stage classifierclassify = Falseif classify:modelc = load_classifier(name='resnet101', n=2)  # initializemodelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()# Set Dataloadervid_path, vid_writer = None, Noneif webcam:view_img = check_imshow()cudnn.benchmark = True  # set True to speed up constant image size inferencedataset = LoadStreams(source, img_size=imgsz, stride=stride)else:save_img = Truedataset = LoadImages(source, img_size=imgsz, stride=stride)# Get names and colorsnames = model.module.names if hasattr(model, 'module') else model.namescolors = [[random.randint(0, 255) for _ in range(3)] for _ in names]# Run inferenceif device.type != 'cpu':model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run oncet0 = time.time()# Apply NMSpred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)t2 = time_synchronized()# Apply Classifierif classify:pred = apply_classifier(pred, modelc, img, im0s)# Process detectionsfor i, det in enumerate(pred):  # detections per imageif webcam:  # batch_size >= 1p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.countelse:p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)p = Path(p)  # to Pathsave_path = str(save_dir / p.name)  # img.jpgtxt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txts += '%gx%g ' % img.shape[2:]  # print stringgn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwhif len(det):# Rescale boxes from img_size to im0 sizedet[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Print resultsfor c in det[:, -1].unique():n = (det[:, -1] == c).sum()  # detections per classs += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string# Write resultsfor *xyxy, conf, cls in reversed(det):if save_txt:  # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywhline = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label formatwith open(txt_path + '.txt', 'a') as f:f.write(('%g ' * len(line)).rstrip() % line + '\n')if save_img or view_img:  # Add bbox to imagelabel = f'{names[int(cls)]} {conf:.2f}'plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)# Print time (inference + NMS)print(f'{s}Done. ({t2 - t1:.3f}s)')# Stream resultsif view_img:cv2.imshow(str(p), im0)cv2.waitKey(1)  # 1 millisecond# Save results (image with detections)if save_img:if dataset.mode == 'image':cv2.imwrite(save_path, im0)else:  # 'video'if vid_path != save_path:  # new videovid_path = save_pathif isinstance(vid_writer, cv2.VideoWriter):vid_writer.release()  # release previous video writerfourcc = 'mp4v'  # output video codecfps = vid_cap.get(cv2.CAP_PROP_FPS)w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))vid_writer.write(im0)if save_txt or save_img:s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''print(f"Results saved to {save_dir}{s}")print(f'Done. ({time.time() - t0:.3f}s)')if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--weights', nargs='+', type=str, default='yolov5_crack_wall_epoach150_batchsize5.pt', help='model.pt path(s)')parser.add_argument('--source', type=str, default='data/images', help='source')  # file/folder, 0 for webcamparser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')parser.add_argument('--view-img', action='store_true', help='display results')parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')parser.add_argument('--augment', action='store_true', help='augmented inference')parser.add_argument('--update', action='store_true', help='update all models')parser.add_argument('--project', default='runs/detect', help='save results to project/name')parser.add_argument('--name', default='exp', help='save results to project/name')parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')opt = parser.parse_args()print(opt)check_requirements()with torch.no_grad():if opt.update:  # update all models (to fix SourceChangeWarning)for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:detect()strip_optimizer(opt.weights)else:detect()

3. 运行结果

三、在线协助:

如需安装运行环境或远程调试,见文章底部个人 QQ 名片,由专业技术人员远程协助!
1)远程安装运行环境,代码调试
2)Qt, C++, Python入门指导
3)界面美化
4)软件制作

博主推荐文章:python人脸识别统计人数qt窗体-CSDN博客

博主推荐文章:Python Yolov5火焰烟雾识别源码分享-CSDN博客

                         Python OpenCV识别行人入口进出人数统计_python识别人数-CSDN博客

个人博客主页:alicema1111的博客_CSDN博客-Python,C++,网页领域博主

博主所有文章点这里:alicema1111的博客_CSDN博客-Python,C++,网页领域博主

相关文章:

Python+Yolov5舰船侦测识别

程序示例精选 PythonYolov5舰船侦测识别 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对<<PythonYolov5舰船侦测识别>>编写代码&#xff0c;代码整洁&#xff0c;规则&#xff0c…...

Qt5.9学习笔记-事件(五) 事件调试和排查

⭐️我叫忆_恒心&#xff0c;一名喜欢书写博客的在读研究生&#x1f468;‍&#x1f393;。 如果觉得本文能帮到您&#xff0c;麻烦点个赞&#x1f44d;呗&#xff01; 近期会不断在专栏里进行更新讲解博客~~~ 有什么问题的小伙伴 欢迎留言提问欧&#xff0c;喜欢的小伙伴给个三…...

【实用工具】SpringBoot实现接口签名验证

需求场景 由于项目需要开发第三方接口给多个供应商&#xff0c;为保证Api接口的安全性&#xff0c;遂采用Api接口签名验证。 Api接口签名验证主要防御措施为以下几个&#xff1a; 请求发起时间得在限制范围内请求的用户是否真实存在是否存在重复请求请求参数是否被篡改 项目…...

DDR基础

欢迎关注我的博客网站nr-linux.com&#xff0c;图片清晰度和&#xff0c;排版会更好些&#xff0c;文章优先更新至博客站。 DDR全称Double Data Rate Synchronous Dynamic Random Access Memory&#xff0c;是当代处理器必不可少的存储器件之一。本文关于DDR介绍的核心点如下&…...

理解find命令

find命令使用通配符&#xff0c;而不是正则表达式 对于如下两个命令 find ./ -name *txt 和 find ./ -name \*txt 这两个命令之间的区别在于 shell 对通配符字符 * 的解释和展开方式不同。 find ./ -name *txt&#xff1a;在这个命令中&#xff0c;shell 在将命令传递给 fin…...

OpenCV教程——调整图像亮度与对比度,绘制形状和文字

调整图像亮度与对比度 1.图像变换 图像变换通常有两种方式&#xff1a; 像素变换&#xff1a;点操作邻域操作&#xff1a;区域 调整图像亮度和对比度属于像素变换&#xff08;点操作&#xff09;。 2.调整图像亮度与对比度 可以通过以下公式调整图像的亮度和对比度&#…...

Python模块篇:函数/类/变量和常量/注释/导入和使用

大家好&#xff0c;我是辣条哥&#xff01;本期应邀写了一些Python模块相关内容~ Python模块是一种组织Python代码的方式&#xff0c;它将相关的代码放在一个文件中&#xff0c;以便于重用和维护。Python模块可以包含函数、类、变量和常量等&#xff0c;可以被其他Python程序导…...

Java反射和动态代理

反射 反射允许对封装类的成员变量、成员方法和构造方法的信息进行编程访问 成员变量&#xff1a;修饰符、名字、类型、get/set值 构造方法&#xff1a;修饰符、名字、形参、创建对象 成员方法&#xff1a;修饰符、名字、形参、返回值、抛出的异常、获取注解、运行方法 获取…...

[NOIP2004 提高组] 津津的储蓄计划(思路+代码详解)Python实现

题目描述 津津的零花钱一直都是自己管理。每个月的月初妈妈给津津300 元钱&#xff0c;津津会预算这个月的花销&#xff0c;并且总能做到实际花销和预算的相同。 为了让津津学习如何储蓄&#xff0c;妈妈提出&#xff0c;津津可以随时把整百的钱存在她那里&#xff0c;到了年…...

分布式搜索引擎es 面试突击

es elastocsearch 倒排索引是在数据查询之前建立&#xff0c;在查询的时候可以直接通过关键词定位到文档内容。用空间换时间 分布式架构原理说一下&#xff1f; es底层是基于lucene来的 大概就是一个用于全文检索的jar包 用es来做分布式的搜索引擎 可以承载一秒钟几千的…...

社会心理学的六个经典实验

社会心理学的六个经典实验 社会心理学&#xff08;Social Psychology&#xff09;是一门研究我们周围情境的力量的科学&#xff0c;尤其关注我们是如何看待他人&#xff0c;如何影响他人的。更确切地说&#xff0c;社会心理学是一门就人们如何看待他人&#xff0c;如何影响他人…...

Java 单例模式详解

单例模式&#xff08;Singleton Pattern&#xff09;是一种常见的设计模式&#xff0c;它可以确保某个类只有一个实例&#xff0c;并提供对该实例的全局访问点。本文将详细介绍 Java 中所有单例模式实现&#xff0c;包括懒汉式、饿汉式、枚举式、双重检查锁定式、静态内部类式等…...

AI读心重磅突破登Nature!大脑信号1秒被看穿,还能预测未来画面

最近&#xff0c;来自洛桑联邦理工学院的研究团队提出了一种全新的方法&#xff0c;可以用AI从大脑信号中提取视频画面。论文已登Nature&#xff0c;却遭网友疯狂「打假」。 现在&#xff0c;AI不仅会读脑&#xff0c;还会预测下一个画面了&#xff01; 利用AI&#xff0c;一个…...

【SAP Abap】X-DOC:SNRO - ABAP流水号应用

【SAP Abap】X-DOC&#xff1a;SNRO - ABAP流水号应用 1、定义表&#xff08;字段域&#xff09;2、定义流水号3、使用流水号4、测试程序 1、定义表&#xff08;字段域&#xff09; 2、定义流水号 Tcode: SNRO/SNUM&#xff0c; 根据以上创建的字段域 YDSNRO&#xff0c;创建对…...

基于AT89C51单片机的交通灯设计与仿真

点击链接获取Keil源码与Project Backups仿真图&#xff1a; https://download.csdn.net/download/qq_64505944/87763760?spm1001.2014.3001.5503 源码获取 主要内容&#xff1a; 设计一个能够控制十二盏交通信号灯的模拟系统,:利用单片机的定时器定时&#xff0c;令十字路口…...

MySQL系列三(定位慢SQL、SQL优化与索引优化)Using filesort

文章目录 1. 慢SQL1.1 定位慢SQL&#xff08;慢查询日志&#xff09;1.2 慢SQL优化整体思路 2. 索引优化3. SQL语句优化回表Using filesort 1. 慢SQL 1.1 定位慢SQL&#xff08;慢查询日志&#xff09; 在mysql 配置文件中 &#xff08;my.conf)&#xff0c;进行下面配置&…...

免费使用GPT-4.0?【AI聊天 | GPT4教学】 —— 微软 New Bing GPT4 申请与使用保姆级教程

目录 认识 New Bing 2. 注册并登录 Microsoft 账号 3. 如何免科学上网使用 New Bing&#xff1f; 4. 加入 WaitList 候补名单 5. 使用 New Bing&#xff01; 6. 使用 Skype 免科学上网访问 New Bing&#xff01; 7. 在 Chrome 浏览器中使用 New Bing&#xff01; 8. 总…...

渲染对电脑伤害大吗_如何减少渲染伤机?

虽然说摄影穷三代&#xff0c;但想要自己的本地配置跟上自己的创作速度&#xff0c;高昂的硬件配置支出也可以让自己穷一段时间。CG制作过程中&#xff0c;渲染是必不可少的一步&#xff0c;而且这一步也是很吃“机器”的&#xff0c;那很多人也会担心&#xff0c;如果经常用自…...

非线性最小二乘

非线性最小二乘 目录 文章目录 非线性最小二乘目录 [toc]1 非线性最小二乘估计3 非线性最小二乘的实现 1 非线性最小二乘估计 在经典最小二乘法估计中&#xff0c;假定被解释变量的条件期望是关于参数的线性函数&#xff0c;例如 E ( y ∣ x ) a b x E(y|x) abx E(y∣x)a…...

23.5.7总结(学习通项目思路)

项目&#xff1a; 1.登录修改&#xff1a;删除数据库中的状态&#xff0c;通过使用 ConcurrentHashMap来作为是否在线的判断&#xff0c;通过设定一个退出的按钮&#xff0c;发消息给服务端主动移除对应的值。 2.注册&#xff1a;增加了手机号的填写&#xff0c;正则判断&…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...