【MySql】数据库 select 进阶
数据库
- 数据库表的设计
- ER 关系图
- 三大范式
- 聚合函数与分组查询
- 聚合函数 (count、sum、avg、max、min)
- 分组查询 group by fields....having....(条件)
- 多表联查
- 内连接
- 外连接(左连接,右连接)
- 自连接
- 子查询
- 合并查询 UNION
数据库表的设计
ER 关系图
ER 图:以图形的方式描述表与表之间的关系
矩形:实体
圆形:实体属性
菱形:实体间关系
例如:
给定学生信息表的个字段信息,画出其 ER 图
学生信息表(学号,姓名,性别,年龄,出生日期,所属班级)

班级表(班级号,班级描述)

其次,表与表之间存在一对一、一对多、多对一 的对应关系
上述 ER 图,一个学生只能属于一个班级,而一个班级里边可以有多个学生,因此学生信息表与班级表之间是属于多对一的关系

一般在多对多关系中,需要创建一个第三方表来找到两个独立实体之间的关系建立起联系
三大范式
第一范式 1NF:表中每个字段都应该具备原子性(即不可再分割特性)
特性:属性不可分割,即每个属性都是不可分割的原子项。(实体的属性即表中的列)
第二范式 2NF:主要针对组合主键的表
表中的每个字段都应该与主键完全关联
特性:在1NF的基础上,非码属性必须完全依赖于候选码(在1NF基础上消除非主属性对主码的部分函数依赖)
例如,在学生信息表中,给定一个主键信息–学生学号 sn,则可以确定唯一的学生信息(学生姓名,学生性别,学生年龄,出生日期…),也就是除学号 sn 以外的其他属性都完全依赖于学生学号 sn
第三范式 3NF:表中每个字段,都应该与主键直接关联而不应该简介关联
特性:在2NF基础上,任何非主属性不依赖于其它非主属性(在2NF基础上消除传递依赖)

聚合函数与分组查询
聚合函数 (count、sum、avg、max、min)
聚合函数:数据库提供给用户的用于进行数据统计的函数
实例中使用的表结构信息:

1、count 统计个数
count(*):统计查询的结果个数
count(列名):会忽略空值

当要查找的列中含有空值时:

2、sum 统计总和
sum(列名):对某属性值进行求和

3、avg 求平均值
avg(列名):对某属性值进行求平均

4、max 对指定字段求最大值
5、min 对指定字段求最小值

分组查询 group by fields…having…(条件)
分组查询本质上是为了进行数据统计
以表中指定字段对数据库表中数据进行分组,然后进行数据统计
例如在学生表中求男女生的平均成绩:

注意:分组查询中需要进行条件过滤时,不能使用 where,而要使用 having
例如在学生信息表中筛选出平均成绩大于80的性别信息:

多表联查
将多张表中的数据进行合并查询---------> 笛卡尔积
给定两张表结果:

内连接
在两张表中数据进行连接时候,找到了符合连接条件的数据则进行连接,找不到符合连接条件的数据则丢弃

内连接:
select* from table1 inner join table2 on condition
内连接结果:

外连接(左连接,右连接)
(1)左连接
左连接:以左表作为基表,在右表中查找符合连接条件的数据,找到了则连接,找不到连接 NULL
左连接:
select* from table1 left join table2 on condition
左连接结果:

(2)右连接
以右表为基表,在左表中查找符合连接条件的数据,找到了则连接,找不到连接 NULL
右连接:
select* from table1 right join table2 on condition
右连接结果:

自连接
一张表自己连接自己进行查找
在前边查找中,我们都是对于同一条记录中的两个不同字段进行比较查找,但是当我们需要对同一条记录中同一个字段中的信息进行比较----------> 需要将这个字段的两个值并列(连接)起来进行比较,这就需要进行自连接
as :取别名
子查询
一个 sql 语句的查询过滤条件是基于另一条查询语句的结果进行的
//示例:
select * from 表名
where 条件 = (
//当子查询结果只有一条结果时候使用 = ,若存在多条结果则使用 INselect* from 表名where 条件 )
IN 与 EXISTS:

合并查询 UNION
将两条语句的查询结果合并起来进行返回,只有当两条语句的查询结果字段保持一致才能进行合并,UNION会自动去重 (UNION ALL 显示所有合并的结果)
相关文章:
【MySql】数据库 select 进阶
数据库 数据库表的设计ER 关系图三大范式 聚合函数与分组查询聚合函数 (count、sum、avg、max、min)分组查询 group by fields....having....(条件) 多表联查内连接外连接(左连接,右连接)自连接子查询合并查询 UNION 数据库表的设计 ER 关系…...
CVPR 2023 | VoxelNeXt实现全稀疏3D检测跟踪,还能结合Seg Anything
在本文中,研究者提出了一个完全稀疏且以体素为基础的3D物体检测和跟踪框架VoxelNeXt。它采用简单的技术,运行快速,没有太多额外的成本,并且可以在没有NMS后处理的情况下以优雅的方式工作。VoxelNeXt在大规模数据集nuScenes、Waymo…...
本地使用3台centos7虚拟机搭建K8S集群教程
第一步 准备3台centos7虚拟机 3台虚拟机与主机的网络模式都是桥接的模式,也就是他们都是一台独立的“主机” (1)kebe-master的配置 虚拟机配置: 网络配置: (2)kebe-node1的配置 虚拟机配…...
NVIDIA CUDA驱动安装
1 引言 因为笔记本电脑上运行Milvus图像检索代码,需要安装CUDA驱动。电脑显卡型号是NVIDIA GeForce GTX 1050 Ti Mobile, 操作系统是Ubuntu 20.04,内核版本为Linux 5.15.0-72-generic。 2 CUDA驱动测试 参考网上的资料:https://blog.csdn.…...
python 从excel中获取需要执行的用例
classmethod def get_excel_data(cls, excel_name, sheet_name, case_numNone):"""读取excel文件的方法:param excel_name: 文件名称:param sheet_name: sheet页的名称:param case_name: 执行的case名称:return:"""def get_row_data(table, row)…...
Web3中文|乱花渐欲meme人眼,BRC-20总市值逼近10亿美元
现在的Web3加密市场,用“乱花渐欲meme人眼”来形容再合适不过了。 何为meme? “meme”这个词大概很多人都不知道如何正确发音,并且一看到它就会和狗狗币Dogecoin等联系在一起。那它究竟从何而来呢? Meme:[mi:m]&#x…...
盖雅案例入选「首届人力资源服务国际贸易交流合作大会20项创新经验」
近日,首届人力资源服务国际贸易交流合作大会顺利召开。为激励企业在人力资源服务贸易领域不断创新,加快培育对外贸易新业态、新模式,形成人力资源服务领域国际竞争新优势,大会评选出了「首届人力资源服务国际贸易交流合作大会20项…...
[论文笔记]SimMIM:a Simple Framework for Masked Image Modeling
文章地址:https://arxiv.org/abs/2111.09886 代码地址:https://github.com/microsoft/SimMIM 文章目录 摘要文章思路创新点文章框架Masking strategyPrediction headPrediction targetEvaluation protocols 性能实验实验设置Mask 策略预测头目标分辨率预…...
mysql从零开始(4)----索引/视图/范式
接上文 mysql从零开始(3) 索引 索引是在数据库表的字段上添加的,是为了提高查询效率存在的一种机制。一张表的一个字段可以添加一个索引,也可以多个字段联合起来添加索引。索引相当于一本书的目录,是为了缩小扫描范围…...
Flutter框架:从入门到实战,构建跨平台移动应用的全流程解析
第一章:Flutter框架介绍 Flutter框架是由Google推出的一款跨平台移动应用开发框架。相比其他跨平台框架,Flutter具有更高的性能和更好的用户体验。本章将介绍Flutter框架的概念、特点以及与其他跨平台框架的比较,以及Flutter开发环境的搭建和…...
Spring AOP+注解方式实现系统日志记录
一、前言 在上篇文章中,我们使用了AOP思想实现日志记录的功能,代码中采用了指定连接点方式(Pointcut(“execution(* com.nowcoder.community.controller..(…))”)),指定后不需要在进行任何操作就可以记录日志了&…...
OpenGL 4.0的Tessellation Shader(细分曲面着色器)
细分曲面着色器(Tessellation Shader)处于顶点着色器阶段的下一个阶段,我们可以看以下链接的OpenGL渲染流水线的图:Rendering Pipeline Overview。它是由ATI在2001年率先设计出来的。 目录 细分曲面着色器细分曲面Patch细分曲面控…...
项目经理如何及时掌控项目进度?
延迟是指超出计划的时间,而无法掌控则意味着管理者对实际情况一无所知。 为了解决这些问题,我们需要建立好的制度和沟通机制。例如使用项目管理软件来跟踪进度、定期开会并避免沟通障碍等。 管理者可以建立相关制度: 1、建立进度记录制度。…...
HTML <applet> 标签
HTML5 中不支持 <applet> 标签在 HTML 4 中用于定义嵌入式小程序(插件)。 实例 一个嵌入的 Java applet: <applet code="Bubbles.class" width="350" height="350"> Java applet that draws animated bubbles. </applet&g…...
加密与解密
加密与解密 加密方式分类 加密方式主要分为两种 一种是对称加密一种是非对称加密 对称加密 对称和非对称两种方式主要说的是加密和解密两个过程。 如果对数据用一个钥匙进行了加密,那么, 你想成功读取到这个加密了的数据的话,就必须对这…...
京东金融Android瘦身探索与实践
作者:京东科技 冯建华 一、背景 随着业务不断迭代更新,App的大小也在快速增加,2019年~2022年期间一度超过了117M,期间我们也做了部分优化如图1红色部分所示,但在做优化的同时面临着新的增量代码,包体积一直…...
open3d-ml 读取SemanticKITTI Dataset
目录 1. 下载dataset 2. 读取并做可视化 3. 源码阅读 3.1 读取点云数据-bin格式 3.2 读取标注数据-.label文件 3.3 读取配置 3.4 test 3.5 train 1. 下载dataset 以SemanticKITTI为例。下载链接:http://semantic-kitti.org/dataset.html#download 把上面三…...
6.其他函数
1.时间日期类 -- current_date() 返回当前日期 -- date_add(date, n) 返回从date开始n天之后的日期 -- date_sub(date, n) 返回从date开始n天之前的日期 -- datediff(date1, date2) 返回date1-date2的日期差 -- year(date) 返回…...
2023年宜昌市中等职业学校技能大赛 “网络搭建与应用”竞赛题-1
2023年宜昌市中等职业学校技能大赛 “网络搭建与应用”竞赛题 一、竞赛内容分布 “网络搭建及应用”竞赛共分二个部分,其中: 第一部分:企业网络搭建部署项目,占总分的比例为50%; 第二部分:企业网络服…...
Linux权限划分的原则
考察的不仅是一个具体的指令,还考察对技术层面的认知。 如果对 Linux 权限有较深的认知和理解,那么完全可以通过查资料去完成具体指令的执行。更重要的是,认知清晰的程序员可以把 Linux 权限管理的知识迁移到其他的系统设计中。 权限抽象 一…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
掌握 HTTP 请求:理解 cURL GET 语法
cURL 是一个强大的命令行工具,用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中,cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
xmind转换为markdown
文章目录 解锁思维导图新姿势:将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件(ZIP处理)2.解析JSON数据结构3:递归转换树形结构4:Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...
MeshGPT 笔记
[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭!_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...
Java多线程实现之Runnable接口深度解析
Java多线程实现之Runnable接口深度解析 一、Runnable接口概述1.1 接口定义1.2 与Thread类的关系1.3 使用Runnable接口的优势 二、Runnable接口的基本实现方式2.1 传统方式实现Runnable接口2.2 使用匿名内部类实现Runnable接口2.3 使用Lambda表达式实现Runnable接口 三、Runnabl…...
