当前位置: 首页 > news >正文

入门深度学习——基于全连接神经网络的手写数字识别案例(python代码实现)

入门深度学习——基于全连接神经网络的手写数字识别案例(python代码实现)

一、网络构建

1.1 问题导入

如图所示,数字五的图片作为输入,layer01层为输入层,layer02层为隐藏层,找出每列最大值对应索引为输出层。根据下图给出的网络结构搭建本案例用到的全连接神经网络
在这里插入图片描述

1.2 手写字数据集MINST

如图所示,MNIST数据集是机器学习领域中非常经典的一个数据集,由60000个训练样本和10000个测试样本组成,每个样本都是一张28 * 28像素的灰度手写数字图片。数据集也被嵌入到sklearn和pytorch框架中可以直接调用。这里我们默认已经安装了pytorch框架。不会使用的这里简单介绍一下。
大家可以用按住win+R键,打开运行窗口,输入cmd。
在这里插入图片描述
输入cmd,回车后,会显示如下。
在这里插入图片描述
输入以下的命令,可以看看自己的电脑的显卡是不是NVIDIA。如果是AMD的,那么就安装cpu的吧,毕竟CUDA内核,只支持NVIDIA的显卡。

#AMD显卡
pip install pytorch-cpu
#NVIDIA显卡
pip install pytorch
#如果速度慢的话,可以加入清华源的链接
pip install pytorch-cpu -i https://pypi.tuna.tsinghua.edu.cn/simple/
#NVIDIA显卡
pip install pytorch -i https://pypi.tuna.tsinghua.edu.cn/simple/

这样就完成了,仍然存在问题的小伙伴,可以参考小程序员推荐的这个up主的教程pytorch保姆级教程。
这里我们输出几张图片和对应的标签。作为对数据集的了解,也方便我们针对性的设计网络结构,做到心中有数。
在这里插入图片描述

二、采用Pytorch框架编写全连接神经网络代码实现手写字识别

2.1 导入必要的包

import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
from torchvision import datasets,transforms
from torch.utils.data import DataLoader

2.2 定义一些数据预处理操作

pipline=transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.5],[0.5])])

2.3 下载数据集(训练集vs测试集)

train_dataset=datasets.MNIST('./data',train=True,transform=pipline,download=True)
test_dataset=datasets.MNIST('./data',train=False,transform=pipline,download=True)
print(len(train_dataset))
print(len(test_dataset))

60000
10000

2.4 分批加载训练集和测试集中的数据到内存里

train_loader=DataLoader(train_dataset,batch_size=32,shuffle=True)
test_loader=DataLoader(test_dataset,batch_size=32)

2.5 可视化数据集中的数据,做到心中有数

import matplotlib.pyplot as plt
examples=enumerate(train_loader)
_,(example_data,example_label)=next(examples)
print(example_data.shape)
for i in range(6):plt.subplot(2,3,i+1)plt.tight_layout()plt.imshow(example_data[i][0],cmap='gray')
#     plt.title('Ground Truth:{}'.format(example_label[i]))plt.title(f'Ground Truth:{example_label[i]}')

torch.Size([32, 1, 28, 28])
在这里插入图片描述

2.6 网络模型设计(有时也称为网络模型搭建)

class Net(nn.Module):def __init__(self,in_dim,n_hidden_1,n_hidden_2,out_dim):super(Net,self).__init__()self.layer1=nn.Sequential(nn.Linear(in_dim,n_hidden_1),nn.ReLU(True))self.layer2=nn.Sequential(nn.Linear(n_hidden_1,n_hidden_2),nn.Sigmoid())self.layer3=nn.Linear(n_hidden_2,out_dim)    def forward(self,x):x=self.layer1(x)x=self.layer2(x)x=self.layer3(x)return x
model=Net(28*28,300,100,10)
model

以下结果来自Jupyter Notebook
Net(
(layer1): Sequential(
(0): Linear(in_features=784, out_features=300, bias=True)
(1): ReLU(inplace=True)
)
(layer2): Sequential(
(0): Linear(in_features=300, out_features=100, bias=True)
(1): Sigmoid()
)
(layer3): Linear(in_features=100, out_features=10, bias=True)
)

import torch.optim as optim
criterion=nn.CrossEntropyLoss()   #选用Pytorch中nn模块封装好的交叉熵损失函数
optimizer=optim.SGD(model.parameters(),lr=0.01,momentum=0.5)  #选用随机梯度下降法(SGD)作为本模型的梯度下降法
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')   #确定代码运行设备究竟实在GPU还是CPU上跑
model.to(device)

2.7 训练网络模型

losses=[]
acces=[]eval_losses=[]
eval_acces=[]#训练轮数---epochfor epoch in range(10):train_loss=0train_acc=0model.train()   #启用网络模型隐藏层中的dropout和BN(批归一化)操作if epoch%5==0:   #控制训练轮数间隔optimizer.param_groups[0]['lr']*=0.9    #动态调整学习率for img,label in train_loader:img=img.to(device)   #将训练图片写到设备里label=label.to(device)  #将图片类别写到设备里img=img.view(img.size(0),-1)out=model(img)   #调用前向传播函数得到预测值loss=criterion(out,label)   #计算预测值和真实值的损失optimizer.zero_grad()  #在新一轮反向传播开始前,清空上一轮反向传播得到的梯度loss.backward()  #把上一部得到的损失执行反向传播,得到新的网络模型参数(权值)optimizer.step()   #把上一部得到的新的权值更新到网络模型里#在前面前向传播和反向传播的额基础上,计算一些训练算法性能指标train_loss+=loss.item()  #记录反向传播每一轮得到的损失_,pred=out.max(1)   #得到图片的预测类别num_correct=(pred==label).sum().item()   #获取预测正确的样本数量acc=num_correct/img.shape[0]      #每一批次的正确率train_acc+=acc       #每一轮次的额正确率losses.append(train_loss/len(train_loader))    #所有轮次训练完之后总的损失acces.append(train_acc/len(train_loader))     #所有轮次训练完之后总的正确率

2.8 在测试集上测试网络模型,检验模型效果

eval_loss=0
eval_acc=0
model.eval()   #继续沿用BN操作,但是不再使用dropout操作with torch.no_grad():for img,label in test_loader:img=img.to(device)label=label.to(device)img=img.view(img.size(0),-1)out=model(img)loss=criterion(out,label)eval_loss+=loss.item()   #记录每一批次的损失_,pred=out.max(1)num_correct=(pred==label).sum().item()acc=num_correct/img.shape[0]   #记录每一批次的准确率eval_acc+=acc     #记录每一轮的准确率eval_losses.append(eval_loss / len(test_loader))eval_acces.append(eval_acc / len(test_loader))print('epoch: {}, Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'.format(epoch, train_loss / len(train_loader), train_acc / len(train_loader), eval_loss / len(test_loader), eval_acc / len(test_loader)))

epoch: 0, Train Loss: 1.1721, Train Acc: 0.6760, Test Loss: 0.4936, Test Acc: 0.8692
epoch: 1, Train Loss: 0.4093, Train Acc: 0.8866, Test Loss: 0.3368, Test Acc: 0.9020
epoch: 2, Train Loss: 0.3192, Train Acc: 0.9084, Test Loss: 0.2884, Test Acc: 0.9171
epoch: 3, Train Loss: 0.2755, Train Acc: 0.9194, Test Loss: 0.2552, Test Acc: 0.9271
epoch: 4, Train Loss: 0.2429, Train Acc: 0.9290, Test Loss: 0.2251, Test Acc: 0.9349
epoch: 5, Train Loss: 0.2160, Train Acc: 0.9367, Test Loss: 0.2001, Test Acc: 0.9405
epoch: 6, Train Loss: 0.1945, Train Acc: 0.9433, Test Loss: 0.1854, Test Acc: 0.9447
epoch: 7, Train Loss: 0.1761, Train Acc: 0.9494, Test Loss: 0.1716, Test Acc: 0.9504
epoch: 8, Train Loss: 0.1601, Train Acc: 0.9540, Test Loss: 0.1597, Test Acc: 0.9527
epoch: 9, Train Loss: 0.1468, Train Acc: 0.9572, Test Loss: 0.1434, Test Acc: 0.9567

2.10可视化训练及测试的损失值

plt.title('Train Loss')
plt.plot(np.arange(len(losses)),losses);
plt.legend(['Train Loss'],loc='upper right')                   

损失函数的结果:
在这里插入图片描述

三、代码文件

小程序员将代码文件和相关素材整理到了百度网盘里,因为文件大小基本不大,大家也不用担心限速问题。后期小程序员有能力的话,将在gitee或者github上上传相关素材。
链接:https://pan.baidu.com/s/1Ce14ZQYEYWJxhpNEP1ERhg?pwd=7mvf
提取码:7mvf

相关文章:

入门深度学习——基于全连接神经网络的手写数字识别案例(python代码实现)

入门深度学习——基于全连接神经网络的手写数字识别案例(python代码实现) 一、网络构建 1.1 问题导入 如图所示,数字五的图片作为输入,layer01层为输入层,layer02层为隐藏层,找出每列最大值对应索引为输…...

预算砍砍砍,IT运维如何降本增效

疫情短暂过去,一个乐观的共识正在蔓延:2023年的互联网,绝对不会比2022年更差。 “降本”是过去一年许多公司的核心策略,营销大幅缩水、亏损业务大量撤裁,以及层出不穷的裁员消息。而2023年在可预期的经济复苏下&#…...

10.Jenkins用tags的方式自动发布java应用

Jenkins用tags的方式自动发布java应用1.配置jenkins,告诉jenkins,jdk的安装目录,maven的安装目录2.构建一个maven项目指定构建参数,选择Git Paramete在源码管理中,填写我们git项目的地址,调用变量构建前执行…...

2023新华为OD机试题 - 相同数字的积木游戏 1(JavaScript)

相同数字的积木游戏 1 题目 小华和小薇一起通过玩积木游戏学习数学。 他们有很多积木,每个积木块上都有一个数字, 积木块上的数字可能相同。 小华随机拿一些积木挨着排成一排,请小薇找到这排积木中数字相同且所处位置最远的 2 块积木块,计算他们的距离。 小薇请你帮忙替她…...

重构之改善既有代码的设计(一)

1.1 何为重构,为何重构 第一个定义是名词形式: 重构(名词):对软件内部结构的一种调整,目的是在不改变「软件可察行为」前提下,提高其可理解性,降低修改成本。 「重构」的另一个用…...

Kotlin data class 数据类用法

实验数据 {"code":1,"message":"成功","data":{"name":"周杰轮","gender":1} }kotlin数据类使用方便提供如下内部Api: equals()/hashCode()对 toString() componentN()按声明顺序与属性相…...

随笔-老子不想牺牲了

18年来到这个项目组,当时只有8个人,包括经常不在的架构师和经理。当时的工位在西区1栋A座,办公桌很宽敞。随着项目的发展,入职的人越来越多,项目的工位也是几经搬迁。基本上每次搬迁时,我的工位都是挑剩下的…...

三种查找Windows10环境变量的方法

文章目录一.在设置中查看二. 在我的电脑中查看三. 在资源管理器里查看一.在设置中查看 在系统中搜索设置 打开设置,在设置功能里,点击第一项 系统 在系统功能里,左侧菜单找到关于 在关于的相关设置里可以看到高级系统设置 点击高级系…...

STM32单片机DS18B20测温程序源代码

OLED液晶屏电路接口DS18B20电路接口STM32单片机DS18B20测温程序源代码#include "sys.h"#define LED_RED PBout(12)#define LED_GREEN PBout(13)#define LED_YELLOW PBout(14)#define LED_BLUE PBout(15)#define DS18B20_IO_IN() {GPIOA->CRL&0XFFFFFFF0;GPIOA…...

java日志查看工具finder介绍

目录 一、finder介绍 二、单节点部署 1、服务器需要安装Tomcat,以2.82.16.35为例 2、进入Tomcat下目录webapps下,创建FIND目录,进入FIDN目录 3、下载findweb插件,解压缩 4、登录页面,配置 5、添加日志路径 三、…...

手写现代前端框架diff算法-前端面试进阶

前言 在前端工程上,日益复杂的今天,性能优化已经成为必不可少的环境。前端需要从每一个细节的问题去优化。那么如何更优,当然与他的如何怎么实现的有关。比如key为什么不能使用index呢?为什么不使用随机数呢?答案当然…...

【半监督医学图像分割 2022 MICCAI】CLLE 论文翻译

文章目录【半监督医学图像分割 2022 MICCAI】CLLE 论文翻译摘要1. 简介2. 方法2.1 半监督框架概述2.2 监督局部对比学习2.3 下采样和块划分3. 实验4. 结论【半监督医学图像分割 2022 MICCAI】CLLE 论文翻译 论文题目:Semi-supervised Contrastive Learning for Labe…...

vivo官网App模块化开发方案-ModularDevTool

作者:vivo 互联网客户端团队- Wang Zhenyu 本文主要讲述了Android客户端模块化开发的痛点及解决方案,详细讲解了方案的实现思路和具体实现方法。 说明:本工具基于vivo互联网客户端团队内部开源的编译管理工具开发。 一、背景 现在客户端的业…...

Python基础-数据类型之数字类型

变量中的变量值是用来存储事物状态的,事物的状态分成不同的种类(例如:人的姓名、年龄,身高、职位、工资等),因此变量值有多种不同的数据类型。 age 18 # 用整型记录年龄 salary 3.1 # 用浮点型记录…...

基于Web的6个完美3D图形WebGL库

现代前端、游戏和Web开发正是WebGL可以转化为数字杰作的东西。使用GPU绘制在浏览器屏幕上生成的矢量元素,WebGL创建交互式Web图形,从而获得用户体验。视觉元素的质量和复杂性使该工具在HTML或CSS等其他方法中脱颖而出。WebGL基础WebGL不是一个图形套件。…...

界面组件DevExpress Reporting v22.2 - 增强的Web报表组件UI

DevExpress Reporting是.NET Framework下功能完善的报表平台,它附带了易于使用的Visual Studio报表设计器和丰富的报表控件集,包括数据透视表、图表,因此您可以构建无与伦比、信息清晰的报表。DevExpress Reporting v22.2版本已正式发布&…...

初学vector

目录 string的收尾 拷贝构造的现代写法: 浅拷贝: 拷贝构造的现代写法: swap函数: 内置类型有拷贝构造和赋值重载吗? 完善拷贝构造的现代写法: 赋值重载的现代写法: 更精简的现代写法&…...

Windows10 安装wsl2、Ubuntu相关操作

Windows10 安装wsl2、Ubuntu相关操作 安装wsl2 查看本机windows版本: 键盘上按下winr,输入winver,查看系统版本。必须运行 windows 10 版本 2004 及更高版本(内部版本 19041 及更高版本)或 windows 11。满足版本要求后&#xf…...

SpringBoot简单使用MongoDB

MongoDB介绍 SpringBoot简单使用MongoDB 一、配置步骤 1、application.yml 2、pom 3、entity 4、mapper 二、案例代码使用 1、库 前期准备上一篇安装MongoDB地址http://t.csdn.cn/G4oYJ 跟关系型数据库概念对比 Mysql MongoDB Database(数据库) Datab…...

Oracle Data Guard 角色转换(Role Transitions)

查询视图V$DATABASE的DATABASE_ROLE列可以看到数据库当前的角色。 1.角色转换介绍 Oracle Data Guard让你可以使用SQL语句或者通过Oracle Data Guard broker界面来动态更改数据库的角色,Oracle Data Guard支持以下的角色转换: 1&#xff0…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...

DAY 26 函数专题1

函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...

Mac flutter环境搭建

一、下载flutter sdk 制作 Android 应用 | Flutter 中文文档 - Flutter 中文开发者网站 - Flutter 1、查看mac电脑处理器选择sdk 2、解压 unzip ~/Downloads/flutter_macos_arm64_3.32.2-stable.zip \ -d ~/development/ 3、添加环境变量 命令行打开配置环境变量文件 ope…...

React核心概念:State是什么?如何用useState管理组件自己的数据?

系列回顾: 在上一篇《React入门第一步》中,我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目,并修改了App.jsx组件,让页面显示出我们想要的文字。但是,那个页面是“死”的,它只是静态…...

mcts蒙特卡洛模拟树思想

您这个观察非常敏锐,而且在很大程度上是正确的!您已经洞察到了MCTS算法在不同阶段的两种不同行为模式。我们来把这个关系理得更清楚一些,您的理解其实离真相只有一步之遥。 您说的“select是在二次选择的时候起作用”,这个观察非…...