当前位置: 首页 > news >正文

计算机视觉(4)—— 未有深度学习之前

目录

四、未有深度学习之前

4.1 图像分割

4.1.1 基于阈值分割

4.1.2 基于边缘分割

4.1.3 基于区域分割 

(1)区域生长法

(2)分水岭算法

4.1.4 基于图论分割

(1)Graph Cuts 分割 

​(2)GrabCut 分割

4.2 人脸检测

4.2.1 Haar-like 特征 

4.2.2 Haar 级联分类器

4.3 行人检测

4.3.1 HOG

4.3.2 SVM

4.3.3 DPM


 

 

四、未有深度学习之前

4.1 图像分割

4.1.1 基于阈值分割

有一种选阈值方法,使得选出来的黑白和原图像的均值方差最大 

4.1.2 基于边缘分割

4.1.3 基于区域分割 

(1)区域生长法

(2)分水岭算法

4.1.4 基于图论分割

(1)Graph Cuts 分割 

Rp 代表任意一个点是属于前景的可能性大还是背景 

B 就是像素点之间是否连续相似

 (2)GrabCut 分割

 

       就是画的框就是背景和前景的颜色分布都有了,然后找这些颜色分布找若干个聚类中心,框之外的颜色就是背景,背景也找若干个聚类中心;要做的就是在不断的迭代过程中,框住的颜色里属于背景的就会逐渐被归到框外的聚类中心上,框里面的就仅仅属于自己

4.2 人脸检测

4.2.1 Haar-like 特征 

4.2.2 Haar 级联分类器

        现在能和深度学习模型比一比的传统模型几乎只有 xgboost 了 

         这里级联是指:分类器是有所偏向的,对于是正例或疑似正例的看的马虎一点,但是对于肯定的负例会做一个有把握的判断;也就是说对于每个分类器来说,我扔掉的东西就一个不是人脸,不是正例,保留下来的还不确定,就这样的过程叠加若干的,每个分类器也不一样,最后剩下的才是真正的正例。

        弱分类器要弱到什么程度,比如左边左白右黑的分类器,上面识别出人脸和下面不是人脸响应图差异不大;而右边差异就有了,就把这种找出来

4.3 行人检测

4.3.1 HOG

        梯度每落在20度里面的数量,如果是85度,再70和90度之间,就用插值,到70度是15,到90度是5

9是代表没有方向(符号)的梯度 

L2范式可能会好一点 

 

4.3.2 SVM

        就是两类样本找到一条分界线,一分为二后,满足边界上的两个分类的分界面的距离达到最大

 

4.3.3 DPM

 

相关文章:

计算机视觉(4)—— 未有深度学习之前

目录 四、未有深度学习之前 4.1 图像分割 4.1.1 基于阈值分割 4.1.2 基于边缘分割 4.1.3 基于区域分割 (1)区域生长法 (2)分水岭算法 4.1.4 基于图论分割 (1)Graph Cuts 分割 ​(2&…...

怎么获取winform中动态代码生成的控件的状态

winform怎么获取动态代码生成窗口里面的控件的属性状态 MainForm中调用 private void ShowPropertyForm() { PropertyForm form new PropertyForm(selectedShape); form.ShowDialog(); pictureBox1.Refresh(); …...

Windows安装Maven并配置环境

Windows下安装和配置Maven的步骤 介绍:步骤:步骤 1:下载Maven步骤 2:解压缩Maven分发包步骤 3:设置环境变量步骤 4:验证安装 结论: 介绍: Maven是一个非常流行的构建和项目管理工具…...

致力于中小企业JavaEE企业级快速开发平台、后台框架平台

一、开源项目简介 J2eeFAST 是一个 Java EE 企业级快速开发平台, 致力于打造中小企业最好用的开源免费的后台框架平台 。系统基于(Spring Boot、Spring MVC、Apache Shiro、MyBatis-Plus、Freemarker、Bootstrap、AdminLTE)经典技术开发&…...

【神经网络】tensorflow实验9--分类问题

1. 实验目的 ①掌握逻辑回归的基本原理,实现分类器,完成多分类任务; ②掌握逻辑回归中的平方损失函数、交叉熵损失函数以及平均交叉熵损失函数。 2. 实验内容 ①能够使用TensorFlow计算Sigmoid函数、准确率、交叉熵损失函数等&#xff0c…...

LeetCode2. 两数相加

写在前面: 题目链接:LeetCode2两数相加 编程语言:C 题目难度:中等 一、题目描述 给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。 …...

基于无线传感网络(WSN)的目标跟踪技术(Matlab代码实现)

目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨‍💻4 Matlab代码 💥1 概述 无线传感器网络由于其自组织性、鲁棒性及节点数量巨大的特点,非常适合于目标跟踪。无线传感器网络中的移动目标跟踪实际上就是…...

百度发布首个可信AI工具集TrustAI,助力数据分析与增强

百度发布首个集分析与增强于一体的可信AI工具集TrustAI,该工具集旨在帮助用户快速、准确地对各种类型的数据进行分析和增强,从而提高数据的价值和可信度。 随着人工智能技术的快速发展,数据的价值和重要性日益凸显。然而,在数据处…...

电力系统负荷与电价预测优化模型(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

asp.net+C#超市商品进销存管理系统

本超市商品管理系统主要超市内部提供服务,系统分为管理员员工两部分。 本研究课题重点主要包括了下面几大模块:管用户登录,员工管理,商品管理,进货管理,销售管理,供应商信息,会员信…...

轻量级K8s发行版的五大优势,助力企业快速拥抱边缘计算

随着物联网和移动设备的普及,边缘计算已成为当前信息技术领域的热门话题。为了满足这一需求,越来越多的企业开始探索使用容器化技术来打造轻量级的K8s发行版。这种发行版可以更加灵活地部署在物理边缘,提供更快速、更稳定的服务。 在这篇文章…...

【深入理解redis】数据结构

文章目录 动态字符串SDS字符串编码类型 intsetDictZipListZipList的连锁更新问题 QuickListSkipListRedisObjectStringListSet结构ZSETHash Redis 共有 5 种基本数据结构:String(字符串)、List(列表)、Set(…...

《计算机网络—自顶向下方法》 第三章Wireshark实验:DNS协议分析

域名系统 DNS(Domain Name System) 是互联网使用的命名系统,用于把便于大家使用的机器名字转换为 IP 地址。许多应用层软件经常直接使用 DNS,但计算机的用户只是间接而不是直接使用域名系统。 互联网采用层次结构的命名树作为主机的名字,并使…...

JUC(十二)-线程中断相关问题(LockSupport,sleep,InterruptException)

JUC线程中断相关问题总结 线程中断相关问题总结 JUC线程中断相关问题总结一、 sleep 和线程中断之间的关系和特点结论测试验证代码如下 二、 LockSupport 和线程中断之间的关系结论测试验证代码如下 一、 sleep 和线程中断之间的关系和特点 结论 线程调用 Thread.sleep之后会进…...

Kotlin高级协程

Kotlin高级协程 一.前言二.先从线程说起三.协程的设计思想四.协程特点:优雅的实现移步任务五.协程基本使用六.协程和线程相比有什么特点,如何优雅的实现异步任务 一.前言 在文章正式上干货之前,先说一点背景吧;我是 Kotlin 协程官…...

车载软件架构——闲聊几句AUTOSAR BSW(四)

我是穿拖鞋的汉子,魔都中坚持长期主义的工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 我们并不必要为了和谐,而时刻保持通情达理;我们需要具备的是,偶尔有肚量欣然承认在某些方面我们可能会有些不可理喻。该有主见的时候能掷地有声地镇得住场…...

Linux:rpm查询安装 yum安装

环境: 需要插入安装镜像 镜像内有所需的安装库 我这里使用的虚拟机直接连接光盘 连接的光盘挂载在/dev/cdrom 由于我们无法直接进入,所以选择把/dev/cdrom挂载到别的地方即可 mount /dev/cdrom /123 将/dev/cdrom 挂载到 /123 目录下 Packages下就是…...

Android音视频开发之音频录制和播放

1.封装音频录制工具类: public class RecorderAudioManagerUtils {private static volatile RecorderAudioManagerUtils mInstance;public static RecorderAudioManagerUtils getInstance() {if (mInstance null) {synchronized (RecorderAudioManagerUtils.class…...

Java之单例模式

目录 一.上节内容 1.什么是线程安全 2.线程不安全的原因 3.JMM(Java内存模型) 4.synchronized锁 5.锁对象 6.volatile关键字 7.wait()和notify() 8.Java中线程安全的类 二.单例模式 1.什么是单例 2.怎么设计一个单例 1.口头约定 2.使用编程语言的特性 三.饿汉模式…...

【分组码系列】线性分组码的网格图和维特比译码

线性分组码的网格图 由于码字的比特位是统计独立的,所以编码过程可以利用有限状态机来描述,它能精确地确定初始和最终状态。可以利用网格图进一步描述编码过程[36],采用维特比算法进行最大似然译码. 在GF(2)上定义线性分组码(n,k)。相应的(n-k)Xn维校验阵可以写成 令码字为系…...

Cursor实现用excel数据填充word模版的方法

cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...

Spring Boot面试题精选汇总

🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...

深度学习水论文:mamba+图像增强

🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

WebRTC调研

WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...