计算机视觉(4)—— 未有深度学习之前
目录
四、未有深度学习之前
4.1 图像分割
4.1.1 基于阈值分割
4.1.2 基于边缘分割
4.1.3 基于区域分割
(1)区域生长法
(2)分水岭算法
4.1.4 基于图论分割
(1)Graph Cuts 分割
(2)GrabCut 分割
4.2 人脸检测
4.2.1 Haar-like 特征
4.2.2 Haar 级联分类器
4.3 行人检测
4.3.1 HOG
4.3.2 SVM
4.3.3 DPM
四、未有深度学习之前

4.1 图像分割
4.1.1 基于阈值分割


有一种选阈值方法,使得选出来的黑白和原图像的均值方差最大
4.1.2 基于边缘分割

4.1.3 基于区域分割

(1)区域生长法


(2)分水岭算法


4.1.4 基于图论分割

(1)Graph Cuts 分割



Rp 代表任意一个点是属于前景的可能性大还是背景
B 就是像素点之间是否连续相似

(2)GrabCut 分割





就是画的框就是背景和前景的颜色分布都有了,然后找这些颜色分布找若干个聚类中心,框之外的颜色就是背景,背景也找若干个聚类中心;要做的就是在不断的迭代过程中,框住的颜色里属于背景的就会逐渐被归到框外的聚类中心上,框里面的就仅仅属于自己


4.2 人脸检测

4.2.1 Haar-like 特征




4.2.2 Haar 级联分类器
现在能和深度学习模型比一比的传统模型几乎只有 xgboost 了
这里级联是指:分类器是有所偏向的,对于是正例或疑似正例的看的马虎一点,但是对于肯定的负例会做一个有把握的判断;也就是说对于每个分类器来说,我扔掉的东西就一个不是人脸,不是正例,保留下来的还不确定,就这样的过程叠加若干的,每个分类器也不一样,最后剩下的才是真正的正例。


弱分类器要弱到什么程度,比如左边左白右黑的分类器,上面识别出人脸和下面不是人脸响应图差异不大;而右边差异就有了,就把这种找出来



4.3 行人检测

4.3.1 HOG

梯度每落在20度里面的数量,如果是85度,再70和90度之间,就用插值,到70度是15,到90度是5

9是代表没有方向(符号)的梯度

L2范式可能会好一点


4.3.2 SVM
就是两类样本找到一条分界线,一分为二后,满足边界上的两个分类的分界面的距离达到最大




4.3.3 DPM








相关文章:
计算机视觉(4)—— 未有深度学习之前
目录 四、未有深度学习之前 4.1 图像分割 4.1.1 基于阈值分割 4.1.2 基于边缘分割 4.1.3 基于区域分割 (1)区域生长法 (2)分水岭算法 4.1.4 基于图论分割 (1)Graph Cuts 分割 (2&…...
怎么获取winform中动态代码生成的控件的状态
winform怎么获取动态代码生成窗口里面的控件的属性状态 MainForm中调用 private void ShowPropertyForm() { PropertyForm form new PropertyForm(selectedShape); form.ShowDialog(); pictureBox1.Refresh(); …...
Windows安装Maven并配置环境
Windows下安装和配置Maven的步骤 介绍:步骤:步骤 1:下载Maven步骤 2:解压缩Maven分发包步骤 3:设置环境变量步骤 4:验证安装 结论: 介绍: Maven是一个非常流行的构建和项目管理工具…...
致力于中小企业JavaEE企业级快速开发平台、后台框架平台
一、开源项目简介 J2eeFAST 是一个 Java EE 企业级快速开发平台, 致力于打造中小企业最好用的开源免费的后台框架平台 。系统基于(Spring Boot、Spring MVC、Apache Shiro、MyBatis-Plus、Freemarker、Bootstrap、AdminLTE)经典技术开发&…...
【神经网络】tensorflow实验9--分类问题
1. 实验目的 ①掌握逻辑回归的基本原理,实现分类器,完成多分类任务; ②掌握逻辑回归中的平方损失函数、交叉熵损失函数以及平均交叉熵损失函数。 2. 实验内容 ①能够使用TensorFlow计算Sigmoid函数、准确率、交叉熵损失函数等,…...
LeetCode2. 两数相加
写在前面: 题目链接:LeetCode2两数相加 编程语言:C 题目难度:中等 一、题目描述 给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。 …...
基于无线传感网络(WSN)的目标跟踪技术(Matlab代码实现)
目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨💻4 Matlab代码 💥1 概述 无线传感器网络由于其自组织性、鲁棒性及节点数量巨大的特点,非常适合于目标跟踪。无线传感器网络中的移动目标跟踪实际上就是…...
百度发布首个可信AI工具集TrustAI,助力数据分析与增强
百度发布首个集分析与增强于一体的可信AI工具集TrustAI,该工具集旨在帮助用户快速、准确地对各种类型的数据进行分析和增强,从而提高数据的价值和可信度。 随着人工智能技术的快速发展,数据的价值和重要性日益凸显。然而,在数据处…...
电力系统负荷与电价预测优化模型(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
asp.net+C#超市商品进销存管理系统
本超市商品管理系统主要超市内部提供服务,系统分为管理员员工两部分。 本研究课题重点主要包括了下面几大模块:管用户登录,员工管理,商品管理,进货管理,销售管理,供应商信息,会员信…...
轻量级K8s发行版的五大优势,助力企业快速拥抱边缘计算
随着物联网和移动设备的普及,边缘计算已成为当前信息技术领域的热门话题。为了满足这一需求,越来越多的企业开始探索使用容器化技术来打造轻量级的K8s发行版。这种发行版可以更加灵活地部署在物理边缘,提供更快速、更稳定的服务。 在这篇文章…...
【深入理解redis】数据结构
文章目录 动态字符串SDS字符串编码类型 intsetDictZipListZipList的连锁更新问题 QuickListSkipListRedisObjectStringListSet结构ZSETHash Redis 共有 5 种基本数据结构:String(字符串)、List(列表)、Set(…...
《计算机网络—自顶向下方法》 第三章Wireshark实验:DNS协议分析
域名系统 DNS(Domain Name System) 是互联网使用的命名系统,用于把便于大家使用的机器名字转换为 IP 地址。许多应用层软件经常直接使用 DNS,但计算机的用户只是间接而不是直接使用域名系统。 互联网采用层次结构的命名树作为主机的名字,并使…...
JUC(十二)-线程中断相关问题(LockSupport,sleep,InterruptException)
JUC线程中断相关问题总结 线程中断相关问题总结 JUC线程中断相关问题总结一、 sleep 和线程中断之间的关系和特点结论测试验证代码如下 二、 LockSupport 和线程中断之间的关系结论测试验证代码如下 一、 sleep 和线程中断之间的关系和特点 结论 线程调用 Thread.sleep之后会进…...
Kotlin高级协程
Kotlin高级协程 一.前言二.先从线程说起三.协程的设计思想四.协程特点:优雅的实现移步任务五.协程基本使用六.协程和线程相比有什么特点,如何优雅的实现异步任务 一.前言 在文章正式上干货之前,先说一点背景吧;我是 Kotlin 协程官…...
车载软件架构——闲聊几句AUTOSAR BSW(四)
我是穿拖鞋的汉子,魔都中坚持长期主义的工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 我们并不必要为了和谐,而时刻保持通情达理;我们需要具备的是,偶尔有肚量欣然承认在某些方面我们可能会有些不可理喻。该有主见的时候能掷地有声地镇得住场…...
Linux:rpm查询安装 yum安装
环境: 需要插入安装镜像 镜像内有所需的安装库 我这里使用的虚拟机直接连接光盘 连接的光盘挂载在/dev/cdrom 由于我们无法直接进入,所以选择把/dev/cdrom挂载到别的地方即可 mount /dev/cdrom /123 将/dev/cdrom 挂载到 /123 目录下 Packages下就是…...
Android音视频开发之音频录制和播放
1.封装音频录制工具类: public class RecorderAudioManagerUtils {private static volatile RecorderAudioManagerUtils mInstance;public static RecorderAudioManagerUtils getInstance() {if (mInstance null) {synchronized (RecorderAudioManagerUtils.class…...
Java之单例模式
目录 一.上节内容 1.什么是线程安全 2.线程不安全的原因 3.JMM(Java内存模型) 4.synchronized锁 5.锁对象 6.volatile关键字 7.wait()和notify() 8.Java中线程安全的类 二.单例模式 1.什么是单例 2.怎么设计一个单例 1.口头约定 2.使用编程语言的特性 三.饿汉模式…...
【分组码系列】线性分组码的网格图和维特比译码
线性分组码的网格图 由于码字的比特位是统计独立的,所以编码过程可以利用有限状态机来描述,它能精确地确定初始和最终状态。可以利用网格图进一步描述编码过程[36],采用维特比算法进行最大似然译码. 在GF(2)上定义线性分组码(n,k)。相应的(n-k)Xn维校验阵可以写成 令码字为系…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...



