当前位置: 首页 > news >正文

11.构造器的查询.分块.聚合

学习要点:
1.构造器查询
2.分块.聚合
本节课我们来开始学习数据库的构造器查询以及分块和聚合查询。
一.构造器查询
1. table()方法引入相应的表,get()方法可以查询当前表的所有数据;
//获取全部结果
$users = DB::table('users')->get();
2. first()方法,可以获取到第一条数据;
//获取第一条数据
$users = DB::table('users')->first();
3. value(字段名)方法,可以获取到第一条数据的指定字段的值;
//获取第一条数据的 email 字段值
$users = DB::table('users')->value('email');
4. find(id)方法,可以获取指定 id 的一条数据;
//通过 id 获取指定一条数据
$users = DB::table('users')->find(20);
5. pluck(字段名)可以获取所有数据单列值的集合;
//获取单列值的集合
$users = DB::table('users')->pluck('username');
$users = DB::table('users')->pluck('username', 'email');
二.分块.聚合
1. 如果你一次性处理成千上万条记录,防止读取出错,可以使用 chunk()方法;
//切割分块执行,每次读取 3 条,id 排序;
DB::table('users')->orderBy('id')->chunk(3, function ($users) {
foreach ($users as $user) {
echo $user->username;
}
echo '------<br>';
});
2. 构造器查询提供了:count()、max()、min()、avg()和 sum()聚合查询;
//聚合查询
return DB::table('users')->count();
return DB::table('users')->max('price');
return DB::table('users')->avg('price');
3. 构造器查询两个判断记录是否存在的方法:exists()和 doesntexists()方法;
//判断是否存在
return DB::table('users')->where('id', 19)->exists();
return DB::table('users')->where('id', 18)->doesntExist();
PS:这里 DB::第一个使用静态,返回查询对象,然后使用->where 等各种查询方
法,这些查询方法返回的还是查询对象,所以可以继续连缀操作。最后当遇到比如
get()返回结果等方法时,停止连缀。所以,返回结果必须放在最后。

相关文章:

11.构造器的查询.分块.聚合

学习要点&#xff1a; 1.构造器查询 2.分块.聚合 本节课我们来开始学习数据库的构造器查询以及分块和聚合查询。 一&#xff0e;构造器查询 1. table()方法引入相应的表&#xff0c;get()方法可以查询当前表的所有数据&#xff1b; //获取全部结果 $users DB::table(users)-&g…...

微服务保护——Sentinel

初识Sentinel 雪崩问题 微服务调用链路中的某个服务故障&#xff0c;引起整个链路中的所有微服务都不可用&#xff0c;这就是雪崩。 解决雪崩问题的常见方式有四种: 超时处理:设定超时时间&#xff0c;请求超过一定时间没有响应就返回错误信息&#xff0c;不会无休止等待舱壁…...

MySQL面试整理

https://houchen-study.oss-cn-hangzhou.aliyuncs.com/%E9%9D%A2%E8%AF%95/MySQL/MySQL%E9%9D%A2%E8%AF%95%E5%A4%A7%E5%85%A8%281%29.pdf 数据库基础知识 为什么要使用数据库&#xff1f; 什么是MySQL&#xff1f; 数据库的三大范式是什么&#xff1f; MySQL有关权限的表…...

Vscode C++环境配置

多文件编译 打开设置搜索coderunner 找到Executor Map 加入-I目录名 目录名/*.cpp 调试 点击调试以后会产生tasks.json文件&#xff0c;加入链接文件和库文件...

matlab小波去噪

本文将为您介绍如何利用MATLAB进行小波去噪处理&#xff0c;并应用于实际数据。小波去噪是一种通过对数据进行小波分解和重构的方法&#xff0c;有效地去除信号中的噪声&#xff0c;提高信号质量。该方法不仅广泛应用于信号处理、图像处理等领域&#xff0c;在实际生产和科研中…...

为什么要采用全网营销策略?全网营销有何优势?

现在市场上有很多全网营销公司&#xff0c;其实很多企业的经理人疑惑全网营销是要干什么&#xff1f;这些公司能干什么&#xff1f;这里小马识途营销顾问给大家做一个整体的解读。 全网营销&#xff0c;概括地说就是在整个互联网&#xff0c;利用各类互联网平台和工具对产品和服…...

prometheus实战之四:alertmanager的部署和配置

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码)&#xff1a;https://github.com/zq2599/blog_demos 本篇概览 本文是《prometheus实战》系列的第四篇&#xff0c;在《prometheus实战之三&#xff1a;告警规则》中曾经提到过&#xff0c;整个告警功能分为规则和…...

【Python】glob 包的介绍和使用

glob 是 Python 标准库中的一个模块&#xff0c;它提供了一种查找符合特定模式的路径名的方法&#xff0c;类似于命令行中的 glob 命令。glob 模块用于读取指定路径下的所有符合特定规律的文件名&#xff0c;非常适合用于读取文件夹中的文件列表和操作符合特定规律文件列表。 …...

剑指offer(C++)-JZ48:最长不含重复字符的子字符串(算法-动态规划)

作者&#xff1a;翟天保Steven 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 题目描述&#xff1a; 请从字符串中找出一个最长的不包含重复字符的子字符串&#xff0c;计算该最长子字符串的长度。 数据范围…...

两阶段最小二乘法

两阶段最小二乘法 文章目录 两阶段最小二乘法[toc]1、ivreg包介绍2 、R语言实现 1、ivreg包介绍 R语言计量包ivreg用以解决线性回归模型的内生性问题。 描述&#xff1a;工具变量估计的线性模型通过两阶段最小二乘(2SLS) 回归或通过稳健回归M估计(2SM)或MM估计(2SMM)。主要的…...

ArcMap创建格网统计图

目录 前言 一、人口数据获取 来源一&#xff1a;中科院地理所公开数据集 来源二&#xff1a;WorldPop数据集 二、人口格网统计步骤 1.创建渔网 2.人口数据处理 2.1 栅格转点 2.2 空间插值——处理人口缺失数据 2.3 空间连接——渔网人口统计 总结 前言 在科研中&am…...

[VAE] Auto-Encoding Variational Bayes

直接看paper看得云里雾里&#xff0c;李沐视频一语道破天机&#xff08;建议从30min左右开始看GAN到Diffusion的串讲&#xff09;。VAE的核心思路就是下面&#xff1a; 做生成&#xff0c;其实就是从随机向量&#xff08;z&#xff09;到目标图像&#xff08;x&#xff09;的过…...

《程序员面试金典(第6版)》面试题 16.19. 水域大小(深度优先搜索,类似棋盘类问题,八皇后的简化版本,C++)

题目描述 你有一个用于表示一片土地的整数矩阵land&#xff0c;该矩阵中每个点的值代表对应地点的海拔高度。若值为0则表示水域。由垂直、水平或对角连接的水域为池塘。池塘的大小是指相连接的水域的个数。编写一个方法来计算矩阵中所有池塘的大小&#xff0c;返回值需要从小到…...

Spring 注解之@RestController与@Controller的区别

目录 1&#xff1a;介绍 2&#xff1a;区别 3&#xff1a;总体来说 4&#xff1a;社区地址 1&#xff1a;介绍 RestController 和 Controller 是 Spring MVC 中常用的两个注解&#xff0c;它们都可以用于定义一个控制器类。 2&#xff1a;区别 返回值类型不同&#xff1a;…...

Java中的泛型是什么?如何使用泛型

Java中的泛型是指在定义类、接口和方法时使用类型参数&#xff0c;以使得这些类、接口和方法可以操作多种类型的数据&#xff0c;从而提高代码的重用性和安全性。Java的泛型机制是从JDK5开始引入的&#xff0c;它使得Java程序员能够编写更加通用和类型安全的代码。 什么是泛型…...

【飞行棋】多人游戏-微信小程序开发流程详解

可曾记得小时候玩过的飞行棋游戏&#xff0c;是90后的都有玩过吧&#xff0c;现在重温一下&#xff0c;这是一个可以二到四个人参与的游戏&#xff0c;通过投骰子走棋&#xff0c;一开始靠运气&#xff0c;后面还靠自己选择&#xff0c;谁抢占先机才能赢&#xff0c;还可以和小…...

力扣 146. LRU 缓存

一、题目描述 请你设计并实现一个满足LRU&#xff08;最近最少使用&#xff09;缓存约束的数据结构。 实现 LRUCache 类&#xff1a; LRUCache(int capacity) 以正整数作为容量 capacity 初始化LRU缓存。int get(int key) 如果关键字 key 存在于缓存中&#xff0c;则返回关键…...

关于Oracle SCN的最大阈值

SCN每秒增长的速度跟Oracle的版本有关&#xff0c;在Oracle 11.2.0.2之前是每秒允许最大增长16384&#xff0c;在Oracle 11.2.0.2之后是默认每秒允许增长32768&#xff0c;这个值跟新增的隐含参数_max_reasonable_scn_rate有关&#xff0c;如下所示&#xff1a; NAME …...

Linux多路转接之poll

文章目录 一、poll的认识二、编写poll方案服务器三、poll方案多路转接的总结 一、poll的认识 多路转接技术是在不断更新进步的&#xff0c;一开始多路转接采用的是select方案&#xff0c;但是select方案存在的缺点比较多&#xff0c;所以在此基础上改进&#xff0c;产生了poll…...

Webpack打包流程

轻松了解Webpack 打包流程 Webpack是一个现代的JavaScript应用程序的静态模块打包器。它将多个JavaScript文件打包成一个或多个静态资源文件&#xff0c;以便在浏览器中加载。Webpack将应用程序视为一个依赖项图&#xff0c;其中包括应用程序的所有模块&#xff0c;然后通过该…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...