当前位置: 首页 > news >正文

MATLAB连续LTI系统的时域分析(十)

目录

1、实验目的:

2、实验内容:


1、实验目的:

1)掌握利用MATLAB对系统进行时域分析的方法

2)掌握连续时间系统零输入响应的求解方法

3)掌握连续时间系统零状态响应、冲激响应和阶跃响应的求解方法

4)掌握利用计算机进行卷积积分和卷积和计算的方法

2、实验内容

2-1)、已知某系统可以由如下微分方程描述y′′(t)+ y′(t)+6y(t)=x(t)利用MATLAB绘出该系统冲激响应和阶跃响应的时域波形。(注:题中时域范围可取[0 10],参考函数tfimpulsestep

a = [1 1 6]; b = [1];      %微分方程左右两端多项式的系数矩阵
time = 0:0.01:10;          %时域范围[0 10]
sys = tf(b,a);
y1 = impulse(sys,time);    %系统的冲激响应
y2 = step(sys,time);       %系统的阶跃响应
subplot(1,2,1), plot(time,y1), xlabel('时间t'), title('冲激响应');
subplot(1,2,2), plot(time,y2), xlabel('时间t'), title('阶跃响应');

2-2)、编程实现如下图所示的两个波形的卷积,并绘制出卷积后的波形。(要求:先构建两信号卷积函数,而后通过调用该函数实现做题) 

编写的卷积函数

function [t,x] = sss_conv(x1,x2,t1,t2,dt)
%文件名与函数名对应
%自写的卷积函数
x = conv(x1,x2)*dt;
t0 = t1(1) + t2(1);
L = length(x1) + length(x2)-2;
t = t0:dt:(t0+L*dt);
end

功能实现

dt = 0.01;
x1 = -1 : dt : 1; 
f1t = 2*(heaviside(x1+1) - heaviside(x1-1));
% plot(x1,f1t);
x2 = -2 : dt : 2; 
f2t = heaviside(x2+2) - heaviside(x2-2);
% plot(x2,f2t);
[t, f] = My_conv(f1t, f2t, x1, x2, dt);    %调用卷积函数
plot(t, f); 
axis([-4 4 -1 5]);

2-3)、已知系统的微分方程为:,x(t)为e-tu(t),用数值法求零状态响应y(t)并绘图。(注:题中时域范围可取[0 10]

a = [1 4 4]; b = [1 3]; dt = 0.1; t = 0:dt:10; % 微分方程左侧系数向量a,微分方程右侧系数向量b
[r,p] = residue(b,a); % 用residue函数(参见12.1.2节)求出其特征根p1、p2和相应的留数r1、r2h = r(1)*exp(p(1)*t)+r(2)*exp(p(2)*t);  %叠加各根分量
subplot(1,2,1), plot(t,h), title('冲激响应');
x = exp(-t);    % t已经大于0了
y = conv(x,h)*dt;   % 求x和h的卷积,长度为2*length(t)-1
subplot(1,2,2), plot(t,y(1:length(t))), title('零状态响应');

2-4)、分别用数值法和符号法求齐次微分方程在给定初始条件下的零输入响应波形,y′′(t)+2y(t)=0,y(0_)=3,y′(0_)=4。(注:题中时域范围可取[0 10],以实现方法作为图形标题名称)

% (1)数值法
a = [1 0 2];            % 方程左端系数向量
n=length(a)-1;          % 微分方程的阶数(即根的数量)
Y0 = [3 4];             % 初始条件向量
p=roots(a);		        % 求特征方程的根
V=rot90(vander(p));     % 生成范德蒙特矩阵
C= V\Y0';	            % 求对应于各特征根的系数   左除
dt = 0.1; tf = 10;      % 时域取值范围[0 10]
t = 0:dt:tf;            % 时域取值范围[0 10]
y = zeros(1,length(t));
for k=1:n  y = y + C(k)*exp(p(k)*t); end       % 将各分量叠加,得到零输入响应的通式
subplot(121);
plot(t, y), xlabel('t'), ylabel('real(y)');    %零输入响应的实部随时间变化的趋势
title('数值法');% 符号法
eq='D2y+2*y=0'; con='y(0)=3, Dy(0)=4';
y = dsolve(eq, con); y=simplify(y);
subplot(122);
ezplot(y, t);       %一定要加参数t,限制时间的范围,保证波形正确
axis([0 10 -5 5]);  % 限制xy轴范围
title('符号法'); 

2-5)、求系统,y′(0+)=-1;y(0+)=0的全响应。(注:题中时域范围可取[0 10],参考函数tf2sslsim

clear
b = [1]; a = [1 0 1];
t = 0:0.1:10; x = cos(t);
sys1 = tf(b,a);      %系统函数模型
y1 = lsim(sys1,x,t); %零状态响应
% subplot(1,2,1),plot(t,y1);
xlabel('时间');title('零状态响应');
[A B C D] = tf2ss(b,a); %系统函数模型转化成状态空间模型参数
sys2 = ss(A,B,C,D) ;zi = [-1 0]; %产生状态空间模型和初始状态矩阵
y2 = lsim(sys2,x,t,zi);          %全响应
% subplot(1,2,2);
plot(t,y2);
xlabel('时间t');title('全响应');

相关文章:

MATLAB连续LTI系统的时域分析(十)

目录 1、实验目的: 2、实验内容: 1、实验目的: 1)掌握利用MATLAB对系统进行时域分析的方法; 2)掌握连续时间系统零输入响应的求解方法; 3)掌握连续时间系统零状态响应、冲激响应和…...

HBuilderX使用

HBuilderX使用(Vue前后端分离) 概述:DCloud开发者后台 DAccount Service 1、官网下载开发工具:HBuilderX-高效极客技巧 注意:安装目录路径中不能出现中文特殊字符,否则会造成项目无法编译。比如C:/Progr…...

【JavaSE】多态(多态实现的条件 重写 向上转移和向下转型 向上转型 向下转型 多态的优缺点 避免在构造方法种调用重写的方法)

文章目录 多态多态实现的条件重写向上转移和向下转型向上转型向下转型 多态的优缺点避免在构造方法种调用重写的方法 多态 一种事物,多种形态。 多态的概念:去完成某个行为,当不同对象去完成时会产生出不同的状态。 多态实现的条件 1.必须…...

MySQL学习---13、存储过程与存储函数

1、存储过程概述 MySQL从5.0版本开始支持存储过程和函数。存储过程和函数能够将负杂的SQL逻辑封装在一起,应用程序无序关注存储过程和函数内部复杂的SQL逻辑,而只需要简单的调用存储过程和函数就可以。 1.1 理解 含义:存储过程的英文是Sto…...

Mysql日志管理、备份与恢复

文章目录 一、Mysql日志管理1.mysql日志2.日志种类3.日志的查询4.配置日志文件 二、Mysql备份与分类1.数据备份的重要性 一、Mysql日志管理 1.mysql日志 Mysql的日志默认保存位置为/usr/local/mysql/date,Mysql的日志配置文件为/etc/my.cnf,里面有一个…...

STM32单片机声控语音识别RGB彩灯多种模式亮度可调WS2812彩灯

实践制作DIY- GC0129-语音识别RGB彩灯 一、功能说明: 基于STM32单片机设计-语音识别RGB彩灯 二、功能介绍: STM32F103C系列最小系统板5VUSB电源64个灯珠的WS2812灯板1个开关键(3档亮度调节)1个模式切换键(白灯 红灯…...

高校9大学术工具推荐,一定要用起来哦!

1、文献管理工具:例如EndNote、Mendeley和Zotero,这些工具可以帮助您整理、管理和引用文献。 2、数据分析工具:例如SPSS、R和Python等,用于进行统计分析和数据处理。 3、学术写作工具:例如LaTeX和Microsoft Word&…...

记一次压力测试

性能测试文档 背景 为对产品性能有一定了解,现将产品展开一次性能测试; 环境与工具 本章为基本工具准备及linux命令说明,无先后顺序。 Xshell工具 本文使用Xshell在Windows界面下远程登录linux主机安装Xshell直接全部选择默认选项即可&…...

一个文明是否有竞争力,在很大程度上取决于信息传递的效率。

文章目录 引言I 有效地传递信息1.1 信息传播分类1.2 信息传递的有效性II 科技进步的必要条件和充分条件2.1 能量总量2.2 能量密度2.3 衡量科技成就的大小2.4 科学的诞生的意义:获得叠加式收益引言 科技进步的必要条件是能量总量,而充分条件是能量密度。一个文明是否有竞争力,…...

测试4年,跳槽一次涨8k,我跳了3次···

最近有人说,现在测试岗位初始工资太低了,有些刚刚入行的程序员朋友说自己工资连5位数都没有.....干了好几年也没怎么涨。看看别人动辄月薪2-3万,其实我想说也没那么难。说下如何高效地拿到3w。 1.暂且把刚入行的条件设低些吧,大专…...

Redis 入门教程(简单全面版)

1 安装: 1.1 生产环境安装 注意: 1、如果安装过程有问题可以参考源代码中的 README.md 文件 2、如果服务器只安装一个 redis 通常选择 /usr/local/redis 作为安装目录,如果安装多台则建议带上 服务名称 区分(建议带上 服务名称 区…...

java并发-AQS

当我们使用Java并发编程时,我们经常会听到“AQS”的概念。AQS代表“AbstractQueuedSynchronizer”,是Java并发包中的一个重要组件。AQS提供了一个框架,使得开发者可以轻松地实现各种同步器,例如锁,信号量,倒…...

openAI图像生成开发文档

图像生成 了解如何使用我们的 DALLE 型号 介绍 图像 API 提供了三种与图像交互的方法: 根据文本提示从头开始创建图像根据新的文本提示创建现有图像的编辑创建现有图像的变体 本指南介绍了使用这三个 API 终结点的基础知识以及有用的代码示例。要了解它们的实际…...

Python综合案例—利用tkinter实现计算器的程序

目录 一、导入 tkinter 库 定义全局变量 二、定义回调函数 三、创建窗口对象 四、创建标签控件 五、创建数字按钮 六、创建加、减、乘、除和等于按钮 七、创建清空按钮 八、总结 用Python实现计算器可以让我们更好地理解面向对象编程、GUI 编程和事件驱动编程等概念&a…...

canvas学习笔记

其实还有react还没有学&#xff0c;但是公司技术栈里面有canvas&#xff0c;所以先系统学习一下canvas 一、canvas 简介 ​<canvas> 是 HTML5 新增的&#xff0c;一个可以使用脚本(通常为 JavaScript) 在其中绘制图像的 HTML 元素。它可以用来制作照片集或者制作简单(也…...

Navicat Premium 15安装注教程

Navicat Premium 15安装 准备工作 下载好安装包navicat150_premium_cs_x64和安装完成Navicat Premium 15 链接&#xff1a;https://pan.baidu.com/s/1TJs3pjAXJXhu7-13DJLzpg 提取码&#xff1a;hunk 安装Navicat Premium 15 无脑操作&#xff0c;下一步下一步就行了&…...

yolo v8

这个系列代码被封装的非常的精致&#xff0c;对二次开发不太友好&#xff0c;虽然也还是可以做些调节 模型的导出 有三种方式试过&#xff0c;都可以导出onnx的模型 1. 用yolov8 源码来自&#xff1a;ultralytics\yolo\engine\exporter.py (不固定尺寸) yolo export modelpa…...

2022IDEA的下载、安装、配置与使用

文章目录 1.IntelliJ IDEA 介绍1.2 JetBrains 公司介绍1.2 IntelliJ IDEA 介绍1.3 IDEA 的主要功能介绍1.3.1 语言支持上1.3.2 其他支持 1.4 IDEA 的主要优势&#xff1a;(相较于 Eclipse 而言)1.5 IDEA 的下载地址1.6 官网提供的详细使用文档 2.windows 下安装过程2.1 安装前的…...

实验十 超市订单管理系统综合实验

实验十 超市订单管理系统综合实验 应粉丝要求&#xff0c;本博主帮助实现基本效果&#xff01; 未避免产生版权问题&#xff0c;本项目博主不公开源码&#xff0c;如果您遇到相关问题可私聊博主&#xff01; 一、实验目的及任务 通过该实验&#xff0c;掌握利用SSM框架进行系…...

微服架构基础设施环境平台搭建 -(二)Docker私有仓库Harbor服务搭建

微服架构基础设施环境平台搭建 -&#xff08;二&#xff09;Docker私有仓库Harbor服务搭建 通过采用微服相关架构构建一套以KubernetesDocker为自动化运维基础平台&#xff0c;以微服务为服务中心&#xff0c;在此基础之上构建业务中台&#xff0c;并通过Jekins自动构建、编译、…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道

文/法律实务观察组 在债务重组领域&#xff0c;专业机构的核心价值不仅在于减轻债务数字&#xff0c;更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明&#xff0c;合法债务优化需同步实现三重平衡&#xff1a; 法律刚性&#xff08;债…...