当前位置: 首页 > news >正文

MySQL学习---17、MySQL8其它新特性

1、MySQL新增特性

1.1 更简便的NoSQL支持

NoSQL泛指非关系型数据库和数据存储。随着互联网平台的规模飞速发展,传统的关系型数据库已经越来越不能瞒住需求。从5.6版本开始,MySQL就开始支持简单的NoSQL存储功能。MySQL 8对这一功能做了优化,以更灵活的方式实现NoSQL功能,不再依赖模式(schema)。

1.2 更好的索引

在查询中,正确地使用索引可以提高查询的效率。MySQL8中新增了隐藏索引和降序索引。隐藏索引可以用来测试去掉索引对查询性能的影响。在查询中混合多列索引时,使用降序索引可以提高查询的性能。

1.3 更完善的JSON支持

MySQL从5.7开始支持原生JSON数据的存储,MySQL8对这一功能做了优化,增加了聚合函数JSON_ARRAYAGG()和JSON_OBJECTAGG(),将参数聚合为JSON数组或对象,新增了行内操作符–>,是列路径运算符->的增强,对JSON排序做了提示,并优化了JSON的更新操作。

1.4 安全和账号管理

MySQL8新增caching_sha2_password授权插件、角色、密码历史记录和FIPS模式支持,这些特性提高了数据的安全性和性能,使数据库管理员能够更加灵活地进行账户管理工作。

1.5 InnoDB的变化

InnoDB是MySQL默认的存储引擎,是事务性数据库的首选引擎,支持事务安全表(ACID),支持行锁定和外键。在MySQL8版本中,InnoDB在自增、索引、加密、死锁、共享锁等方面做了大量的改进和优化,并且支持原子数据定义语言(DDL),提高了数据安全性,对事务提供更好的支持。

1.6 数据字典

在之前的MySQL版本中,字典数据都存储在元数据文件和非事务表中。从MySQL8开始新增了数据数据字典,在这个字典中存储着数据库对象的信息,这些数据字典存储在内部事务表中。

1.7 原子数据定义语句

MySQL8开始支持原子数据定义语句(Automic DDL),即原子DDL。目前。只有InnoDB存储引擎支持原子DDL。原子数据定义语句(DDL)将与DDL操作相关的数据字典更新、存储引擎操作、二进制日志写入结合到一个单独的原子事务中,这使得即使服务器崩溃,事务也会提交或回滚。使用支持原子操作的存储引擎所创建的表,在执行Drop table、Create table、alter table、rename table、truncate table、等操作时,都支持原子操作,即事务要么完全操作成功,要么失败回滚,不再进行部分提交。

1.8 资源管理

MySQL8开始支持创建和管理资源组,允许将服务器内运行的线程分配给特定的组,以便线程根据组内可用资源执行。组属性能够控制组内资源,启用或限制组内资源消耗。数据库管理员能够根据不同的工作负载适当地更改这些属性。目前,cpu时间是可控资源,由‘虚拟cpu’这个概念来表示,此术语包含cpu的核心数,超线程,硬件线程等。服务器在启动时确定可用的虚拟cpu数量。拥有对应权限的数据库管理员可以将这些CPU与资源组相关联,并且为资源组分配线程。

1.9 字符集支持

MySQL8中默认的字符集由latin1更改为utf8mb4,并首次增加了日语所特点使用的集合。

1.10 优化器增强

MySQL优化器开始支持隐藏索引和降序索引。隐藏索引不会被优化器使用,验证索引的必要性时不需要删除索引,先将索引隐藏,如果优化器性能无影响就可以真正的删除索引。降序索引允许优化器对多个列进行排序,并且运行排序顺序不一致。

1.11 公用表表达式

公用表表达式(Common Table Expression)简称CTE,MySQL现在支持递归和非递归两种形式的CTE。CTE通过在select语句或其他特点语句前使用With语句对临时结果集进行命名。
基本语法:

With cte_name(col_name1,col_name2,...) as (Subquery)
select * from cte_name

说明:
Subquery代表子查询,子查询前使用With语句将结果集命名为cte_name,在后续的查询中即可使用cte_name进行查询

1.12 窗口函数

MySQL开始支持窗口函数。在之前的版本已经存在大部分的聚合函数,在MySQL8中也可以作为窗口函数来使用。

函数名称描述
Cume_Dist ()累计的分布值
Dense_Rank()对当前记录不间断排序
First_Value()返回窗口首行记录的对应字段值
Lag()返回对象字段的前n行记录
Last_Value()返回窗口尾行记录的对应字段值
Lead()返回对应字段的后n行记录
Nth_Value()返回地n条记录对应的字段值
Ntile()将区划分为n组,并返回组的数量
Percent_Rank()返回0到1之间的小数,表示某个字段值在数据分区中的排名
Rank()返回分区内每条记录对应的排名
Row_Number返回每一条记录对应的序号,且不重复

1.13 正则表达式

MySQL在8.0.4以后得版本中采用支持Unicode的国际化组件库实现正则表达式操作,这种方式不仅能提供完全Unicode支持,而且是多字节安全编码。MySQL增加了REGEXP_LIKE()、EGEXP_INSTR()、REGEXP_REPLACE()和 REGEXP_SUBSTR()等函数来提升性能。另外,regexp_stack_limit和 regexp_time_limit 系统变量能够通过匹配引擎来控制资源消耗。

1.14 内部临时表

TempTable存储引擎取代Memory存储引擎成为内部临时表的默认存储引擎。TempTable存储引擎为VarChar和VarBInary列提供高效存储。intermal_tmp_mem_storge_engine会话变量定义了内部临时表的存储引擎,可选的值有两个,TempTable和Memory,其中TempTable为默认的存储引擎。temptable_max_ram系统配置项定义了TempTable存储引擎可使用的最大内存数量。

1.15 日志记录

在MySQL8中错误日志子系统由一系列MySQL组件组成。这些组件的·构成由系统变量log_error_services来配置,能够实现日志时间的过滤和写入。

1.16 增强的MySQL复制

MySQL8复制支持对JSON文档进行部分更新的二进制日志记录,该记录使用紧凑的二进制格式,从而节省完整JSON文档空间。当使用基于语句的日志记录时,这种紧凑的日志记录会自动完成,并且可以通过新的binlog_row_value_options系统变量值设置为PARTIA_JSON来启用。

2、窗口函数

MySQL从8.0版本开始支持窗口函数,窗口函数的作用类似于在查询中对数据进行分组,不同的是,分组操作会把分组的结果聚合成一条记录,而窗口函数式将结果置于每一条数据记录中。

窗口函数可以分为静态窗口函数和动态窗口函数。
(1)静态窗口函数的窗口ed大小是固定的,不会因为记录的不同而不同。
(2)动态窗口函数的窗口大小会随着记录的不同而变化。

函数分类函数函数说明
序号函数Row_Number()排序函数
序号函数Rank()并列排序,会跳过重复的序号,比如序号1,1,3
序号函数Dense_Rank()并列排序,不会跳过重复的序号,比如序号1,1,2
分布函数Percent_Rank()等级值百分比
分布函数Cume_Dist()累计分布值
前后函数Lag(expr,n)返回当前行的前n行的expr值
前后函数LEAD(expr,n)返回当前行的后n行的expr的值
首尾函数First_Value()返回第一个expr值
首尾函数Last_Value()返回最后一个expr值
其他函数Nth_Value(expr,n)返回第n个expr值
其他函数Ntile(n)将分区中的有序数据分为n个桶,记录桶的编号

1、语法结构

函数 over ([partition by 字段名  order by 字段名  asc|desc])

函数 over 窗口名 ...Window 窗口名 as ([partition by 字段名 order by 字段名 ASC|DESC])

2、案例实操

CREATE TABLE sales(id INT PRIMARY KEY AUTO_INCREMENT,city VARCHAR(15),county VARCHAR(15),sales_value DECIMAL
);INSERT INTO sales(city,county,sales_value)
VALUES
('北京','海淀',10.00),
('北京','朝阳',20.00),
('上海','黄埔',30.00),
('上海','长宁',10.00);SELECT * FROM sales;#需求:现在计算这个网站在每个城市的销售总额,在全国的销售总额,每个区的销售额占所在城市销售
#中的比率,以及占总销售额的比率#如果用分组和聚合函数计算要分好几步来算
#第一步
CREATE TEMPORARY TABLE a
SELECT SUM(sales_value) AS sales_value
FROM sales;SELECT * FROM a;#计算每个城市的销售总额并存入临时表中
CREATE TEMPORARY TABLE b
SELECT city,SUM(sales_value) AS sales_value
FROM sales
GROUP BY city;DROP TABLE b;SELECT * FROM b;#计算各区销售占所在城市的总金额的比例和占全部销售总计金额的比例SELECT s.city AS 城市 ,s.county AS,s.sales_value AS 销售额,
b.sales_value AS 市销售额,s.sales_value /b.sales_value AS 市比率,
a.sales_value AS 总销售额,s.sales_value /a.sales_value AS 总比例
FROM sales s
JOIN b ON (s.city=b.city)
JOIN a 
ORDER BY s.city,s.county;SELECT * 
FROM b JOIN a;#如果用窗口函数
SELECT city AS 城市 ,county AS,sales_value AS 销售额,
SUM(sales_value) over(PARTITION BY city) AS 市销售额,
sales_value/SUM(sales_value) over (PARTITION BY city) AS 市比率,
SUM(sales_value) over() AS 总销售额,
sales_value/SUM(sales_value) over() AS 总比率
FROM sales
ORDER BY city,county;

在这里插入图片描述

相关文章:

MySQL学习---17、MySQL8其它新特性

1、MySQL新增特性 1.1 更简便的NoSQL支持 NoSQL泛指非关系型数据库和数据存储。随着互联网平台的规模飞速发展,传统的关系型数据库已经越来越不能瞒住需求。从5.6版本开始,MySQL就开始支持简单的NoSQL存储功能。MySQL 8对这一功能做了优化,…...

快速入门matlab——变量练习

学习目标:1.掌握matlab编程中最常用的几种变量类型 2.对变量类型的属性有所熟悉,不要求记忆,知道了解即可 3.要求熟练运用这几种变量类型创建自己的变量 clear all; % 清除Workspace中的所有…...

c++ 11标准模板(STL) std::set(三)

定义于头文件 <set> template< class Key, class Compare std::less<Key>, class Allocator std::allocator<Key> > class set;(1)namespace pmr { template <class Key, class Compare std::less<Key>> using se…...

ChatGPT详细介绍

ChatGPT: 自然语言处理的强大工具 ChatGPT是一种基于人工智能的自然语言处理模型&#xff0c;它是由OpenAI开发的一款先进的语言模型。ChatGPT基于GPT-3.5架构&#xff0c;具有强大的语言生成和理解能力。它被设计用于与人类进行自然对话&#xff0c;并提供广泛的应用场景。 …...

【算法】【算法杂谈】让[0,x)区间上的出现概率变为x^k

目录 前言问题介绍解决方案代码编写java语言版本c语言版本c语言版本 思考感悟写在最后 前言 当前所有算法都使用测试用例运行过&#xff0c;但是不保证100%的测试用例&#xff0c;如果存在问题务必联系批评指正~ 在此感谢左大神让我对算法有了新的感悟认识&#xff01; 问题介…...

【2023华为OD笔试必会25题--C语言版】《21 对称美学》——字符串、递归

本专栏收录了华为OD 2022 Q4和2023Q1笔试题目,100分类别中的出现频率最高(至少出现100次)的25道,每篇文章包括原始题目 和 我亲自编写并在Visual Studio中运行成功的C语言代码。 仅供参考、启发使用,切不可照搬、照抄,查重倒是可以过,但后面的技术面试还是会暴露的。✨✨…...

为减少来自环境使用的无线传感器网络的传输次数而开发的方法(Matlab代码实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f468;‍&#x1f4bb;4 Matlab代码 &#x1f4a5;1 概述 随着无线传感器网络(Wireless Sensor Network,WSN)的广泛应用,业界开始应用环境能量收集技术解决传感器节点的能量补充问题。而…...

springboot+vue滴答拍摄影项目(源码+文档)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的滴答拍摄影项目。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 &#x1f495;&#x1f495;作者&#xff1a;风歌…...

SQL基础培训13-索引和优化

进度13-索引和优化-SQL基础培训 知识点: 你可以把索引理解为一种特殊的目录。索引分聚集索引(clustered index,也称聚类索引、簇集索引) 和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)。 1、聚集索引 以汉语字典举例,汉语字典有部首目录和检字表,还…...

拥抱5G发展机遇,从边缘计算上车

随着5G技术的逐渐普及和应用&#xff0c;边缘计算成为了当前信息技术领域的热门话题。边缘计算是指将计算和数据存储移动到网络的边缘&#xff0c;即源站以外的网络设备。与云计算相比&#xff0c;边缘计算更加贴近数据生成和处理的实时应用场景&#xff0c;具有更高的性能和更…...

“前端”工匠系列(二):合格的工匠,怎么做好价值落地 | 京东云技术团队

一、“技术鄙视链&#xff1f;” 如果你是一个技术人&#xff0c;相信都知道技术圈有个相互的鄙视链&#xff0c;这个链条从技术人自己认知的角度在以业务价值为中心嵌套的一层一层的环&#xff0c;就像洋葱&#xff0c;具体的描述这里不赘述了。 出门左拐随便抓住一个人问一…...

Oracle11g下载与安装

一、Oracle11g下载 官网下载地址&#xff1a;Oracle Database 11g Release 2 for Microsoft Windows (x64) 选择"Accept License Agreement"&#xff0c;点击"win64_11gR2_database_1of2.zip"和"win64_11gR2_database_2of2.zip"&#xff0c;进行…...

考研复试-软件工程

什么是软件工程&#xff1f;主要的方法&#xff1f;软件工程三要素&#xff1f;软件的生命周期&#xff1f;组成部分&#xff1f;软件过程的定义软件需求分析的任务软件开发过程的常见模型结构化设计方法&#xff0c;结构化分析方法软件测试的目的&#xff1f;分类&#xff1f;…...

软件测试选择题

下列选项中&#xff0c;哪一项不是软件开发模型&#xff08;A&#xff09; A、V模型 B、快速模型 C、螺旋模型 D、敏捷模型 下列选项中&#xff0c;哪一项不是影响软件质量的因素&#xff08;C&#xff09; A、需求模糊 B、缺乏规范的文档指导 C、使用新技术 D、开发人…...

有限合伙企业与有限公司的区别

1、设立要求不同&#xff1a; 有限合伙企业&#xff1a;根据《合伙企业法》设立&#xff0c;第61条规定必须由2个&#xff08;包含2个&#xff09;以上的合伙人出资设立&#xff0c;有限合伙企业合伙人中至少有一名是普通合伙人。有限责任公司&#xff1a;根据《公司法》设立&…...

从洛克菲勒思想中洞悉的财富秘密

超友们&#xff0c;早上好&#xff5e; &#x1f646; 今天我为你带来的分享是《从洛克菲勒思想中洞悉的财富秘密》&#xff0c;主要分为两个部分&#xff1a; 一、【洛克菲勒的 10 大底层心法】 二、【洛克菲勒工作的 6 大原则】 如何从贫穷通往富裕&#xff1f; 「始终把这…...

如何训练自己的大型语言模型

如何使用 Databricks、Hugging Face 和 MosaicML 训练大型语言模型 (LLM) 介绍 大型语言模型&#xff0c;如 OpenAI 的 GPT-4 或谷歌的 PaLM&#xff0c;已经席卷了人工智能世界。然而&#xff0c;大多数公司目前没有能力训练这些模型&#xff0c;并且完全依赖少数大型科技公司…...

Java中的SLF4J是什么?如何使用SLF4J进行日志管理

在Java开发中&#xff0c;日志管理是一个非常重要的问题。日志管理可以帮助开发人员更好地了解应用程序的运行情况&#xff0c;以及快速诊断和解决问题。而SLF4J是Java中最常用的日志管理框架之一。在本文中&#xff0c;我们将详细介绍SLF4J的概念和使用方法。 什么是SLF4J&am…...

PHP程序员面对的压力大不大?我来聊聊程序员转行的就业方向

作为一名程序员&#xff0c;不同领域、不同公司和不同项目所面对的压力程度可能会有所不同。但是&#xff0c;一般来说&#xff0c;程序员需要长时间专注于编写代码&#xff0c;需要不断学习和适应新的技术和变化&#xff0c;还需要在项目的压力下保证工作的质量和进度。因此&a…...

牛客网专项练习Pytnon分析库(十)

1.Python Pandas处理缺失值&#xff0c;以下哪个选项是对缺失值NaN进行删除操作&#xff08;C&#xff09;。 A.isnull B.notnull C.dropna D.fillna 解析&#xff1a; A选项&#xff0c;Isnull()返回表明哪些值是缺失值的布尔值&#xff1b; B选项&#xff0c;notnull()返…...

virtualbox 如何虚拟机ip固定

1、在网络管理里新建 2、配置网络 3、 进入linux系统&#xff0c;查看 查看 网卡是enp0s8, ifconfig 4、进入网卡配置文件 cd /etc/sysconfig/network-scripts如果没有enp0s8 &#xff0c;则使用mv ifcfg-enp0s3 ifcfg-enp0s8命令 配置项如下 TYPEEthernet PROXY_METHODn…...

使用 C/C++ 和 OpenCV 添加图片水印

使用 C/C 和 OpenCV 添加图片水印 &#x1f5bc;️ 在数字图像处理中&#xff0c;添加水印是一种常见的操作&#xff0c;可以用于版权保护、品牌宣传或信息标注。本文将介绍如何使用 C/C 和强大的计算机视觉库 OpenCV 来实现将自定义水印&#xff08;图片或文字&#xff09;添…...

【Linux】Ubuntu 创建应用图标的方式汇总,deb/appimage/通用方法

Ubuntu 创建应用图标的方式汇总&#xff0c;deb/appimage/通用方法 对于标准的 Ubuntu&#xff08;使用 GNOME 桌面&#xff09;&#xff0c;desktop 后缀的桌面图标文件主要保存在以下三个路径&#xff1a; 当前用户的桌面目录&#xff08;这是最常见的位置&#xff09;。所…...

K8S认证|CKS题库+答案| 7. Dockerfile 检测

目录 7. Dockerfile 检测 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、修改 Dockerfile 3&#xff09;、 修改 deployment.yaml 7. Dockerfile 检测 免费获取并激活 CKA_v1.31_模拟系统 题目 您必须在以…...

c++对halcon的动态链接库dll封装及调用(细细讲)

七个部分(是个大工程) 一,halcon封装函数导出cpp的内容介绍 二,c++中对halcon环境的配置 三,在配置环境下验证halcon代码 四,dll项目创建+环境配置 五,编辑dll及导出 六,调用打包好的动态链接库的配置 七,进行测试 一,halcon的封装及导出cpp的介绍 1,我这里…...

(2025)Windows修改JupyterNotebook的字体,使用JetBrains Mono

(JetBrains Mono字体未下载就配置,这种情况我不知道能不能行,没做过实验,因为我电脑已经下载了,不可能删了那么多字体做实验,我的建议是下载JetBrains Mono字体,当你使用VsCode配置里面的JetBrains字体也很有用) 首先参考该文章下载字体到电脑上 VSCode 修改字体为JetBrains …...

西门子 S7-1200 PLC 海外远程运维技术方案

西门子 S7-1200 PLC 海外远程运维技术方案 一、面向海外场景的核心优势 针对跨国企业、海外项目及远程技术支持需求&#xff0c;本方案基于巨控GRM552Y-CHE模块提供无缝的全球化远程PLC运维能力&#xff0c;突破地域及时差限制&#xff0c;显著提升国际项目响应效率。 二、海…...

Go 中 map 的双值检测写法详解

Go 中 map 的双值检测写法详解 在 Go 中&#xff0c;if char, exists : pairs[s[i]]; exists { 是一种利用 Go 语言特性编写的优雅条件语句&#xff0c;用于检测 map 中是否存在某个键。让我们分解解释这种写法&#xff1a; 语法结构解析 if value, ok : mapVariable[key]; …...

Linux 的 find 命令使用指南

精通 Linux 的 find 命令:终极使用指南 在 Linux 系统中,find 命令是文件搜索的瑞士军刀,它能基于多种条件在目录树中精准定位文件。无论你是系统管理员还是开发者,掌握 find 都能极大提升工作效率。本文将深入解析 find 的核心用法,并附赠实用示例! 一、基础语法结构 …...

美业破局:AI智能体如何用数据重塑战略决策(5/6)

摘要&#xff1a;文章深入剖析美业现状与挑战&#xff0c;指出其市场规模庞大但竞争激烈&#xff0c;面临获客难、成本高、服务标准化缺失等问题。随后阐述 AI 智能体与数据驱动决策的概念&#xff0c;强调其在美业管理中的重要性。接着详细说明 AI 智能体在美业数据收集、整理…...