当前位置: 首页 > news >正文

Docker入门实战---修改Docker镜像源

前言

现在大部分互联网公司在实施项目时几乎都会以微服务架构进行落地,那么微服务一旦多了之后就会面临一个如何友好的治理的问题,本人不会重点介绍治理的问题,而是会简单就治理的其中一个环节服务部署运维的问题进行介绍,服务部署无非有如下几种:1、私有化部署2、云部署其中以上两种又可以细分为单体部署、容器化部署,那目前由于云原生技术的日趋成熟,大部分公司都为了节省运维成本倾向于容器化部署,再结合云服务商提供的成熟的容器化,虚拟化技术从而更好的进行部署落地

镜像源

为什么有时候需要修改镜像源,镜像源是什么?

什么是镜像源

顾命镜像源是镜像的来源,那目前成熟的基础镜像都有中大型的企业或院校制作而成然后发布在其公网的镜像仓库中,提供开发者使用,据此就知道镜像源肯定会有国内、国外之分,国外公司开发的就自然公布在国外的网站上,国内公司院所开发的就自然会发布在国内的网站上,那就面临一个大家碰到最多的问题,国内用户访问国外的镜像时会很慢

成熟的镜像源

Docker官方镜像:
“https://registry.docker-cn.com”
网易镜像:
“http://hub-mirror.c.163.com”
中国科技大学镜像:
“https://docker.mirrors.ustc.edu.cn”
阿里云镜像:
“https://cr.console.aliyun.com”
腾讯云镜像:
“https://mirror.ccs.tencentyun.com”

如何加速访问镜像

1、修改镜像源,将使用比较多的镜像源改为国内的镜像源
2、采用目前云服务商提供的镜像加速器,如阿里云的镜像加速器

修改镜像源

1、通过可视化的镜像工具(Docker Desktop)
在Docker Desktop的Preferences中点击Docker Engine中进行设置
在这里插入图片描述
按照如下图所示修改registry-mirrors内容
在这里插入图片描述

 2、通过命令行vi /etc/docker/daemon.json

调整 "registry-mirrors"内容,如
“registry-mirrors”: [
“https://registry.docker-cn.com”,
“http://hub-mirror.c.163.com”,
“https://docker.mirrors.ustc.edu.cn”,
“https://cr.console.aliyun.com”,
“https://mirror.ccs.tencentyun.com”
]

以上操作需要重启docker方可生效。

使用镜像加速器加快访问镜像

如下是以阿里云提供的镜像加速器举例说明:在这里插入图片描述

在这里插入图片描述
根据截图中提示,可以根据docker部署当前所在的操作系统选择不同的配置方式

相关文章:

Docker入门实战---修改Docker镜像源

前言 现在大部分互联网公司在实施项目时几乎都会以微服务架构进行落地,那么微服务一旦多了之后就会面临一个如何友好的治理的问题,本人不会重点介绍治理的问题,而是会简单就治理的其中一个环节服务部署运维的问题进行介绍,服务部…...

Java构建高并发高可用的电商平台(静态架构蓝图之剖析架构)

静态架构蓝图 整个架构是分层的分布式的架构,纵向包括CDN,负载均衡/反向代理,web应用,业务层,基础服务层,数据存储层。水平方向包括对整个平台的配置管理部署和监控。 剖析架构 1. CDN CDN系统能够实时…...

SpringBoot核心运行原理解析之------@Conditional条件注解

在SpringBoot核心运行原理解析之------@EnableAutoConfiguration文档中我们完成了自动配置类的读取和筛选,在这个过程中已经涉及了像@ConditionalOnClass这样的条件注解。打开每个自动配置类,都会看到@Conditional或其衍生的条件注解,本节我们来认识下@Conditional注解。 认…...

systemverilog 001 内建数据类型logic

Verilog 有两种基本数据类型,reg 和wire ,都是4值逻辑 0 1 x z,默认值是x。 reg[7:0] m 为无符号 Integer 为有符号32位 time为64位无符号 real为浮点数 systemverilog新引进了logic,logic既可以作为变量(reg功能),也可以作为线网功能(…...

Flink Kafka-Source

文章目录 Kafka Source1. 使用方法2. Topic / Partition 订阅3. 消息解析4. 起始消费位点5. 有界 / 无界模式6. 其他属性7. 动态分区检查8. 事件时间和水印9. 空闲10. 消费位点提交11. 监控12. 安全 Apache Kafka 连接器 Flink 提供了 Apache Kafka 连接器使用精确一次&#xf…...

VoxelNeXt:用于3D检测和跟踪的纯稀疏体素网络

VoxelNeXt:Fully Sparse VoxelNet for 3D Object Detection and Tracking 目前自动驾驶场景的3D检测框架大多依赖于dense head,而3D点云数据本身是稀疏的,这无疑是一种低效和浪费计算量的做法。我们提出了一种纯稀疏的3D 检测框架 VoxelNeXt。该方法可以…...

必须了解的内存屏障

目录 一,内存屏障1,概念2,内存屏障的效果3,cpu中的内存屏障 二,JVM中提供的四类内存屏障指令三,volatile 特性1,保证内存可见性定义2,禁止指令重排序3,不保证原子性 一&a…...

【设计模式】状态模式

文章目录 前言状态模式1、状态模式介绍1.1 存在问题1.2 解决问题1.3 状态模式结构图 2、具体案例说明状态模式2.1 不使用状态模式2.2 使用状态模式 3、状态模式总结 前言 状态模式主要解决的是当控制一个对象状态转换的条件表达式过于复杂时的情况。把状态的判断逻辑转移到表示…...

内核驱动支持浮点数运算

最近在调 iio 下的 ICM42686 驱动,因项目求需要在驱动对加速度和陀螺raw数据进行换算,避免不了浮点运算。内核编译时出现了报错,提示如下: drivers/iio/imu/tdk_icm42686/icm42686.o: In function gyro_data2float: /home/share/…...

Flink学习(一)

分布式计算框架 Java可以使用分布式计算来处理大规模的数据和计算任务,提高计算效率和性能。以下是一些Java分布式计算的例子: Apache Hadoop:Hadoop是一个开源的分布式计算框架,可以处理大规模数据集的分布式存储和处理。它使用Java编写,可以在分布式环境中运行MapReduc…...

linux 常用命令awk

AWK 是一种处理文本文件的语言,是一个强大的文本分析工具。之所以叫 AWK 是因为其取了三位创始人 Alfred Aho,Peter Weinberger, 和 Brian Kernighan 的 Family Name 的首字符。 AWK用法 awk 用法:awk pattern {action} files 1.RS, ORS, F…...

MySQL学习---15、流程控制、游标

1、流程控制 解决复杂问题不可能是通过一个SQL语句完成,我们需要执行多个SQL操作。流程控制语句的作用就是控制存储过程中SQL语句的执行顺序,是我们完成复杂操作必不可少的一部分。只要是执行的程序,流程就分为三大类: 1、顺序结…...

信息调查的观念

每次做一件事前都要把这件事调查清楚,比如考一门科目我们要把和这门科目有关的资源都收集起来,然后把再从中筛选出有用的信息,如数值计算方法我们在考试前就可以把b站有关的学习资源网课或者前人总结的考试经验做个收集总结,做出对…...

leetcode 337. 打家劫舍 III

题目链接:leetcode 337 1.题目 小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。 除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的…...

基于Docker的深度学习环境NVIDIA和CUDA部署以及WSL和linux镜像问题

基于Docker的深度学习环境部署 1. 什么是Docker?2. 深度学习环境的基本要求3. Docker的基本操作3.1 在Windows上安装Docker3.2 在Ubuntu上安装Docker3.3 拉取一个pytorch的镜像3.4 部署自己的项目3.5 导出配置好项目的新镜像 4. 分享新镜像4.1 将镜像导出为tar分享给…...

c#中slice,substr,substring区别

1. 都使用一个参数: //栗子数据 var arr [1,2,3,4,5,6,7], str "helloworld!"; //防止空格干扰,不用带空格的,注意这里有个!号也算一位 console.log(str.slice(1)); //elloworld! console.log(str.substring(1)); //…...

java语言里redis在项目中使用场景,每个场景的样例代码

Redis是一款高性能的NoSQL数据库,常被用于缓存、消息队列、计数器、分布式锁等场景。以下是50个Redis在项目中使用的场景以及对应的样例代码和详细说明: ##1、缓存:将查询结果缓存在Redis中,下次查询时直接从缓存中获取&#xff…...

Mongo集合操作

2、创建切换数据库 2.1 默认数据库 mongo数据库和其他类型的数据库一样,可以创建数据库,且可以创建多个数据库。 mongo数据库默认会有四个数据库,分别是 admin:主要存储MongoDB的用户、角色等信息 config:主要存储…...

ConvTranspose2d 的简单例子理解

文章目录 参考基础概念output_padding 简单例子: stride2step1step2step3 参考 逆卷积的详细解释ConvTranspose2d(fractionally-strided convolutions)nn.ConvTranspose2d的参数output_padding的作用torch.nn.ConvTranspose2d Explained 基础概念 逆卷…...

酒精和肠内外健康:有帮助还是有害?

谷禾健康 酒精与健康 饮酒作为一种特殊的文化形式,在我们国家有其独特的地位,在几千年的发展中,酒几乎渗透到日常生活、社会经济、文化活动之中。 据2018年发表的《中国饮酒人群适量饮酒状况》白皮书数据显示,中国饮酒人群高达6亿…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

今日科技热点速览

🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

Kafka入门-生产者

生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...