17- 梯度提升回归树GBRT (集成算法) (算法)
梯度提升回归树:
- 梯度提升回归树是区别于随机森林的另一种集成方法,它的特点在于纠正与加强,通过合并多个决策树来构建一个更为强大的模型。
- 该模型即可以用于分类问题,也可以用于回归问题中。
- 在该模型中,有三个重要参数分别为 n_estimators(子树数量)、learning_rate(学习率)、max_depth(最大深度)。
- n_estimators 子树数量: 通常用来设置纠正错误的子树数量,梯度提升树通常使用深度很小(1到 5之间)的子树,即强预剪枝,来进行构造强化树。并且这样占用的内存也更少,预测速度也更快。
- learning_rate 学习率: 通常用来控制每颗树纠正前一棵树的强度。较高的学习率意味着每颗树都可以做出较强的修正,这样的模型普遍更复杂。
- max_depth 最大深度: 通常用于降低每颗树的复杂度,从而避免深度过大造成过拟合的现象。梯度提升模型的 max_depth 通常都设置得很小,一般来讲不超过5。
-
梯度提升决策树是监督学习中 最强大也是最常用 的模型之一。
-
该算法无需对数据进行缩放就可以表现得很好,而且也适用于二元特征与连续特征同时存在的数据集。
-
缺点是需要进行仔细调参,且训练时间可能较长,通常不适用于高维稀疏数据。
单一KNN算法: # knn近邻算法: K-近邻算法(KNN)
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X_train,y_train)
KNN集成算法:
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import BaggingClassifier
# 100个算法,集成算法,准确提升到了73.3%
knn = KNeighborsClassifier()
# bag中100个knn算法
bag_knn = BaggingClassifier(base_estimator=knn, n_estimators=100, max_samples=0.8,max_features=0.7)
bag_knn.fit(X_train,y_train)
print('KNN集成算法,得分是:', bag_knn.score(X_test,y_test))
逻辑斯蒂回归集成算法:
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import BaggingClassifier
bag = BaggingClassifier(base_estimator=LogisticRegression(),n_estimators=500,max_samples=0.8, max_features=0.5)
bag.fit(X_train,y_train)
决策树集成算法:
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier
bag = BaggingClassifier(base_estimator=DecisionTreeClassifier(),n_estimators=100,max_samples=1.0,max_features=0.5)
bag.fit(X_train,y_train)
梯度提升回归算法:
from sklearn.ensemble import GradientBoostingRegressor
gbdt = GradientBoostingRegressor(n_estimators=3,loss = 'ls', # 最小二乘法learning_rate=0.1)
gbdt.fit(X,y) # 训练
1、集成算法
1.1、不同集成算法
集成算法流程概述
同质学习器(也叫算法,model,模型)
-
随机森林,同质学习器,内部的100个模型,都是决策树
-
bagging:套袋法
-
随机森林
-
极端森林
-
-
boosting:提升法
-
GBDT
-
AdaBoost
-
1.2、bagging
1.3、自建集成算法(同质)
1、导包数据创建
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
X,y = datasets.load_wine(return_X_y = True)
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state = 1024)
2、KNN集成算法
算法原理:
# 一个算法,准确率 62%
knn = KNeighborsClassifier()
knn.fit(X_train,y_train)
print('单一KNN算法,得分是:',knn.score(X_test,y_test)) # 0.6222222222222222# 100个算法,集成算法,准确提升到了73.3%
knn = KNeighborsClassifier()
# bag中100个knn算法
bag_knn = BaggingClassifier(base_estimator=knn,n_estimators=100,max_samples=0.8,max_features=0.7)
bag_knn.fit(X_train,y_train)
print('KNN集成算法,得分是:',bag_knn.score(X_test,y_test)) # 0.7555555555555555
3、逻辑斯蒂回归集成算法
import warnings
warnings.filterwarnings('ignore')
lr = LogisticRegression()
lr.fit(X_train,y_train)
print('单一逻辑斯蒂算法,得分是:',lr.score(X_test,y_test)) # 0.9333333333333333# 偶尔效果会好
bag = BaggingClassifier(base_estimator=LogisticRegression(),n_estimators=500,max_samples=0.8, max_features=0.5)
bag.fit(X_train,y_train)
print('逻辑斯蒂集成算法,得分是:', bag.score(X_test,y_test)) # 0.9333333333333333
4、决策树自建集成算法
clf = DecisionTreeClassifier()
clf.fit(X_train,y_train)
print('单棵决策树,得分是:',clf.score(X_test,y_test)) # 0.9555555555555556
bag = BaggingClassifier(base_estimator=DecisionTreeClassifier(),n_estimators=100,max_samples=1.0,max_features=0.5)
bag.fit(X_train,y_train)
print('决策树集成算法,得分是:',bag.score(X_test,y_test)) # 0.9777777777777777
1.4、boosting
2、GBDT
2.1、梯度提升树概述
-
gradient Boosting DecisionTree 一一> GBDT
-
Boosting :提升的,一点点靠近最优答案
-
残差
-
残差的意思就是: A的预测值 + A的残差 = A的实际值
-
残差 = 实际值 - 预测值
-
预测值 = 实际值 - 残差
-
2.2、梯度提升树应用
1、使用全量数据构建梯度提升树(0.1434)
from sklearn.ensemble import GradientBoostingRegressor
import numpy as np
import pandas as pd # 加载数据
data_train = pd.read_csv('zhengqi_train.txt', sep='\t')
data_test = pd.read_csv('zhengqi_test.txt', sep='\t')
X_train = data_train.iloc[:,:-1]
y_train = data_train['target']
X_test = data_test# GBDT模型训练预测
gbdt = GradientBoostingRegressor()
gbdt.fit(X_train,y_train)
y_pred = gbdt.predict(X_test)
np.savetxt('GBDT_full_feature_result.txt', y_pred)
2、使用部分数据构建梯度提升树(0.1486)
from sklearn.linear_model import ElasticNet
from sklearn.ensemble import GradientBoostingRegressor
import numpy as np
import pandas as pd # 加载数据
data_train = pd.read_csv('zhengqi_train.txt', sep='\t')
data_test = pd.read_csv('zhengqi_test.txt', sep='\t')
X_train = data_train.iloc[:,:-1]
y_train = data_train['target']
X_test = data_test# 先使用ElaticNet模型进行数据筛选
model = ElasticNet(alpha = 0.1, l1_ratio=0.05)
model.fit(X_train, y_train)
cond = model.coef_ != 0
X_train = X_train.iloc[:,cond]
X_test = X_test.iloc[:,cond]
print('删除数据后,形状是:',X_train.shape)# GBDT模型训练预测
gbdt = GradientBoostingRegressor()
gbdt.fit(X_train,y_train)
y_pred = gbdt.predict(X_test)
np.savetxt('GBDT_drop_feature_result.txt', y_pred)
2.3、梯度提升树原理
1、创建数据并使用梯度提升回归树进行预测
import numpy as np
from sklearn.ensemble import GradientBoostingRegressor
import matplotlib.pyplot as plt
from sklearn import tree
import graphviz### 实际问题,年龄预测,回归问题
# 简单的数据,算法原理,无论简单数据,还是复杂数据,都一样
# 属性一表示花销,属性二表示上网时间
X = np.array([[600,0.8],[800,1.2],[1500,10],[2500,3]])
y = np.array([14,16,24,26]) # 高一、高三,大四,工作两年
# loss = ls 最小二乘法
learning_rate = 0.1
gbdt = GradientBoostingRegressor(n_estimators=3,loss = 'ls',# 最小二乘法learning_rate=0.1)#learning_rate 学习率
gbdt.fit(X,y)#训练
y_ = gbdt.predict(X) # 预测
2、计算残差
# 目标值,真实值,算法,希望,预测,越接近真实,模型越好!!!
print(y)
# 求平均,这个平均值就是算法第一次预测的基准,初始值
print(y.mean())
# 残差:真实值,和预测值之间的差
residual = y - y.mean()
residual
# 残差,越小越好
# 如果残差是0,算法完全准确的把数值预测出来!
3、绘制三棵树
-
第一棵树
# 第一颗树,分叉时,friedman-mse (就是均方误差)= 26
print('均方误差:',((y - y.mean())**2).mean())
dot_data = tree.export_graphviz(gbdt[0,0],filled=True)
graph = graphviz.Source(dot_data)
# 梯度下降,降低残差
residual = residual - learning_rate*residual
residual
# 输出:array([-5.4, -3.6, 3.6, 5.4])
- 第二棵树
# 第二颗树
dot_data = tree.export_graphviz(gbdt[1,0],filled=True)
graph = graphviz.Source(dot_data)
# 梯度下降,降低残差
residual = residual - learning_rate*residual
residual
# 输出:array([-4.86, -3.24, 3.24, 4.86])
- 第三棵树
# 第三颗树
dot_data = tree.export_graphviz(gbdt[2,0],filled=True)
graph = graphviz.Source(dot_data)
# 梯度下降,降低残差
residual = residual - learning_rate*residual
residual
# 输出:array([-4.374, -2.916, 2.916, 4.374])
4、使用残差计算最终结果
# 使用残差一步步,计算的结果
y_ = y - residual
print('使用残差一步步计算,最终结果是:\n',y_)
# 使用算法,预测
gbdt.predict(X)
# 两者输出结果一样
2.4、梯度提升回归树的最佳裂分条件计算
1、第一棵树,分裂情况如下:
# 计算未分裂均方误差
lower_mse = ((y - y.mean())**2).mean()
print('未分裂均方误差是:',lower_mse)
best_split = {}
for index in range(2):for i in range(3):t = X[:,index].copy()t.sort()split = t[i:i + 2].mean()cond = X[:,index] <= splitmse1 = round(((y[cond] - y[cond].mean())**2).mean(),3)mse2 = round(((y[~cond] - y[~cond].mean())**2).mean(),3)p1 = cond.sum()/cond.sizemse = round(mse1 * p1 + mse2 * (1- p1),3)print('第%d列' % (index),'裂分条件是:',split,'均方误差是:',mse1,mse2,mse)if mse < lower_mse:best_split.clear()lower_mse = msebest_split['第%d列'%(index)] = splitelif mse == lower_mse:best_split['第%d列'%(index)] = split
print('最佳分裂条件是:',best_split)
# 输出:
'''
未分裂均方误差是: 26.0
第0列 裂分条件是: 700.0 均方误差是: 0.0 18.667 14.0
第0列 裂分条件是: 1150.0 均方误差是: 1.0 1.0 1.0
第0列 裂分条件是: 2000.0 均方误差是: 18.667 0.0 14.0
第1列 裂分条件是: 1.0 均方误差是: 0.0 18.667 14.0
第1列 裂分条件是: 2.1 均方误差是: 1.0 1.0 1.0
第1列 裂分条件是: 6.5 均方误差是: 27.556 0.0 20.667
最佳分裂条件是: {'第0列': 1150.0, '第1列': 2.1}
'''
2、第二棵树,分裂情况如下:
# 梯度下降,降低残差
residual = residual - learning_rate*residual
# 计算未分裂均方误差
lower_mse = round(((residual - residual.mean())**2).mean(),3)
print('未分裂均方误差是:',lower_mse)
best_split = {}
for index in range(2):for i in range(3):t = X[:,index].copy()t.sort()split = t[i:i + 2].mean()cond = X[:,index] <= splitmse1 = round(((residual[cond] - residual[cond].mean())**2).mean(),3)mse2 = round(((residual[~cond] - residual[~cond].mean())**2).mean(),3)p1 = cond.sum()/cond.sizemse = round(mse1 * p1 + mse2 * (1- p1),3)print('第%d列' % (index),'裂分条件是:',split,'均方误差是:',mse1,mse2,mse)if mse < lower_mse:best_split.clear()lower_mse = msebest_split['第%d列'%(index)] = splitelif mse == lower_mse:best_split['第%d列'%(index)] = split
print('最佳分裂条件是:',best_split)
# 输出
'''
未分裂均方误差是: 21.06
第0列 裂分条件是: 700.0 均方误差是: 0.0 15.12 11.34
第0列 裂分条件是: 1150.0 均方误差是: 0.81 0.81 0.81
第0列 裂分条件是: 2000.0 均方误差是: 15.12 0.0 11.34
第1列 裂分条件是: 1.0 均方误差是: 0.0 15.12 11.34
第1列 裂分条件是: 2.1 均方误差是: 0.81 0.81 0.81
第1列 裂分条件是: 6.5 均方误差是: 22.32 0.0 16.74
最佳分裂条件是: {'第0列': 1150.0, '第1列': 2.1}
'''
3、第三棵树,分裂情况如下:
# 梯度下降,降低残差
residual = residual - learning_rate*residual
# 计算未分裂均方误差
lower_mse = round(((residual - residual.mean())**2).mean(),3)
print('未分裂均方误差是:',lower_mse)
best_split = {}
for index in range(2):for i in range(3):t = X[:,index].copy()t.sort()split = t[i:i + 2].mean()cond = X[:,index] <= splitmse1 = round(((residual[cond] - residual[cond].mean())**2).mean(),3)mse2 = round(((residual[~cond] - residual[~cond].mean())**2).mean(),3)p1 = cond.sum()/cond.sizemse = round(mse1 * p1 + mse2 * (1- p1),3)print('第%d列' % (index),'裂分条件是:',split,'均方误差是:',mse1,mse2,mse)if mse < lower_mse:best_split.clear()lower_mse = msebest_split['第%d列'%(index)] = splitelif mse == lower_mse:best_split['第%d列'%(index)] = split
print('最佳分裂条件是:',best_split)
# 输出
'''
未分裂均方误差是: 17.059
第0列 裂分条件是: 700.0 均方误差是: 0.0 12.247 9.185
第0列 裂分条件是: 1150.0 均方误差是: 0.656 0.656 0.656
第0列 裂分条件是: 2000.0 均方误差是: 12.247 0.0 9.185
第1列 裂分条件是: 1.0 均方误差是: 0.0 12.247 9.185
第1列 裂分条件是: 2.1 均方误差是: 0.656 0.656 0.656
第1列 裂分条件是: 6.5 均方误差是: 18.079 0.0 13.559
最佳分裂条件是: {'第0列': 1150.0, '第1列': 2.1}
'''
相关文章:

17- 梯度提升回归树GBRT (集成算法) (算法)
梯度提升回归树: 梯度提升回归树是区别于随机森林的另一种集成方法,它的特点在于纠正与加强,通过合并多个决策树来构建一个更为强大的模型。该模型即可以用于分类问题,也可以用于回归问题中。在该模型中,有三个重要参数分别为 n_…...

05 OpenCV色彩空间处理
色彩空间(Color Space)是一种用于描述颜色的数学模型,它将颜色表示为多维向量或坐标,通常由三个或四个独立的分量来表示。不同的色彩空间在颜色的表示方式、可表达颜色的范围、计算速度和应用场景等方面存在差异,不同的…...

【CS224图机器学习】task1 图机器学习导论
前言:本期学习是由datawhale(公众号)组织,由子豪兄讲解的202302期CS224图机器学习的学习笔记。本次学习主要针对图机器学习导论做学习总结。1.什么是图机器学习?通过图这种数据结构,对跨模态数据进行整理。…...

Powershell Install SQL Server 2022
前言 SQL Server 2022 (16.x) 在早期版本的基础上构建,旨在将 SQL Server 发展成一个平台,以提供开发语言、数据类型、本地或云环境以及操作系统选项。 SQL Server Management Studio (SSMS) 是一种集成环境,用于管理从 SQL Server 到 Azure SQL 数据库的任何 SQL 基础结构…...

Jetson NX2 装机过程
1.固态硬盘安装完成后,系统配置 df -h 查看硬盘使用情况 2.查看Jetson NX的IP地址,以下两个都行 ifconfig ip address show 3.Jetson NX2安装arm64的annaconda3,安装有问题报错illegal instruction,未解决。 4.VNC远程登录 …...

初始C++(四):内联函数
文章目录一.内联函数概念二.内联函数用法三.内联函数的特性四.内联函数和宏一.内联函数概念 以inline修饰的函数叫做内联函数,编译时C编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。 二.内联函…...

九、初识卷积
文章目录1、通过边缘检测认识卷积2、Padding3、Strid Convelution4、RGB图像的卷积THE END1、通过边缘检测认识卷积 \qquad在使用神经网络进行图像识别时,神经网络的前几层需要完成对图像的边缘检测任务,所谓的边缘检测就是让计算机识别出一张图片的垂直…...
【Linux】【编译】编译调试过程中如何打印出实际的编译命令
🐚作者简介:花神庙码农(专注于Linux、WLAN、TCP/IP、Python等技术方向)🐳博客主页:花神庙码农 ,地址:https://blog.csdn.net/qxhgd🌐系列专栏:Linux技术&…...

linux安装jdk
step1 下载jdk 到下面的网站下载需要的jdk安装包版本。 Java Downloads | Oracle step2 复制到opt目录 其中user_name对应自己的home目录的用户文件夹 sudo cp /home/user_name//home/czh/Downloads/jdk-17_linux-x64_bin.tar.gz /opt/ step3 到opt目录解压安装包…...

迅为iTOP-3A5000龙芯开发板安装UOS操作系统
3A5000板卡采用全国产龙芯3A5000处理器,基于龙芯自主指令系统(LoongArch),市面上龙芯3A5000主板价格都在上万元,可以说是非常贵了, 迅为全新推出了款千元内的iTOP-3A5000开发板,这款板卡各方面的配置也是第…...

Firefox 110, Chrome 110, Chromium 110 官网离线下载 (macOS, Linux, Windows)
Mozilla Firefox, Google Chrome, Chromium, Apple Safari 请访问原文链接:https://sysin.org/blog/chrome-firefox-download/,查看最新版。原创作品,转载请保留出处。 作者主页:www.sysin.org 天下只剩三种(主流&am…...

如何使用ArcGIS转换坐标
1.概述大家都知道ArcGIS提供了坐标转换功能,在我们手里的数据坐标系千差万别,经常会遇到转换坐标的时候,那么是否可以用ArcGIS进行转换?答案是肯定的,但是转换的过程比较复杂,这里为大家介绍一下转换的方法…...

链表基本原理
链表基本原理1.链表1.1 基本原理1.2 链表大O记法表示2. 链表操作2.1 读取2.2 查找2.3 插入2.4 删除3.链表代码实现1.链表 1.1 基本原理 节点 组成链表的数据格子不是连续的。可以分布在内存的各个位置。这种不相邻的格子就叫结点。每个结点保存数据还保存着链表里的下一结点的…...

基于JAVA+SpringBoot+Vue+ElementUI中学化学实验室耗材管理系统
✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景介绍: 当前,中学…...
1.输入子系统学习-struct input_dev-2023.02
内核版本:4.4.194 平台相关:rk3399 目前主要是看的触摸屏的代码 目录 一、include/linux/input.h(struct_input_dev) 二、结构体的注释部分(百度翻译) 三、Documentation/input/event-codes.txt&…...
解决:PDFBox报的java.io.IOException: Missing root object specification in trailer
文章目录问题描述原因分析解决方案问题描述 使用pdfbox类库操作pdf文件时,遇到下面的报错信息: java.io.IOException: Missing root object specification in trailer PDFBox参考: https://pdfbox.apache.org/ Apache PDFBox 库是一个开源的…...

MAC OSX安装Python环境 + Visual Studio Code
MAC上开发python怎么能少得了python3环境呢,而安装python3环境的方式也有多种,这里仅选用并记录本人认为比较方便的方式 安装Homebrew Homebrew是macOS 缺失的软件包管理器, 使用它可以在MAC上安装很多没有预装的东西,详细说明可…...

音乐 APP 用户争夺战,火山引擎 VeDI 助力用户体验升级!
更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,并进入官方交流群 国内数字音乐市场正在保持稳定增长。 根据华经产业研究院数据报告显示,2020 年数字音乐市场规模为 357.3 亿元,到 2022 年市场规模已增长至 482.7 …...

CAP和BASE理论
CAP理论CAP是 Consistency、Availability、Partition tolerance 三个词语的缩写,分别表示一致性、可用性、分区容忍性。它指出一个分布式计算系统不可能同时满足以下三点:• 一致性(Consistency) :等同于所有节点访问同…...

基于商品理解的成交能力和成交满意度优化在Lazada的实践
作者:马蕊 Lazada推荐算法团队 在Lazada各域推荐场景中,既有优质商品优质卖家不断涌现带来的机会,也有商品质量参差带来的问题。如何才能为用户提供更好的体验,对卖家变化行为进行正向激励呢?下面本文将为大家分享我们…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...
tomcat指定使用的jdk版本
说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景
Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知,帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量,能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度,还为机器人、医疗设备和制造业的智…...

MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...