[组合数学]母函数与递推关系
文章目录
- 母函数---解决计数
- 递推关系
- 常系数线性齐次递推关系
- 常系数线性非齐次递推关系
- 汉诺塔递推关系
母函数—解决计数
普母函数—组合问题
指母函数—排列问题

f(x)= ∑ i = 1 n a i x i = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + . . . + a n x n C n 0 + C n 1 ∗ x + C n 2 ∗ x 2 + . . . + C n n ∗ x n = \sum_{i=1}^n{a_ix^i}=\\ a_0 +a_1x + a_2 x^2 + a_3x^3+...+a_nx^n\\ C_n^0+C_n^1*x+C_n^2*x^2+...+C_n^n*x^n = ∑i=1naixi=a0+a1x+a2x2+a3x3+...+anxnCn0+Cn1∗x+Cn2∗x2+...+Cnn∗xn= ( 1 + x ) n (1+x)^n (1+x)n
( 1 + x ) n = ∑ k = 0 n C n k x k = ∑ k = 0 n C n n − k x k (1+x)^n = \sum_{k=0}^nC_n^kx^k=\sum_{k=0}^nC_n^{n-k}x^k (1+x)n=∑k=0nCnkxk=∑k=0nCnn−kxk


∑ k = 0 ∞ ( − 1 ) k C n + k − 1 k z k = 1 ( 1 + z ) n = ( 1 + z ) − n \sum_{k=0}^\infty (-1)^kC_{n+k-1}^{k}z^k=\frac{1}{(1+z)^n}=(1+z)^{-n} ∑k=0∞(−1)kCn+k−1kzk=(1+z)n1=(1+z)−n
( 1 + z ) α = ∑ k = 0 ∞ C α k z k (1+z)^{\alpha}=\sum_{k=0}^{\infty}C_{\alpha}^kz^k (1+z)α=∑k=0∞Cαkzk
( 1 − z ) − n = 1 ( 1 − z ) − n = ∑ k = 0 ∞ C n + k − 1 k z k 其中 ∣ z ∣ < 1 (1-z)^{-n} = \frac{1}{(1-z)^{-n}}=\sum_{k=0}^{\infty}C_{n+k-1}^{k}z^k \quad 其中|z|<1 (1−z)−n=(1−z)−n1=∑k=0∞Cn+k−1kzk其中∣z∣<1
∑ n = 1 ∞ C 2 n n x n = ( 1 − 4 x ) − 1 2 \sum_{n=1}^{\infty}C_{2n}^{n}x^n=(1-4x)^{-\frac{1}{2}} ∑n=1∞C2nnxn=(1−4x)−21
其中 C 2 n n = 2 n ! n ! ∗ n ! = 2 n ∗ n ! n ! ∗ n ! = 2 n n ! 其中 C_{2n}^n=\frac{2n!}{n!*n!}=\frac{2^n*n!}{n!*n!}=\frac{2^n}{n!} 其中C2nn=n!∗n!2n!=n!∗n!2n∗n!=n!2n
1 ( 1 + x ) = ∑ k = 0 ∞ C − 1 k z k = ∑ k = 0 ∞ ( − 1 ) k x k \frac {1}{(1+x)} = \sum_{k=0}^{\infty}C_{-1}^kz^k=\sum_{k=0}^{\infty}(-1)^kx^k (1+x)1=∑k=0∞C−1kzk=∑k=0∞(−1)kxk
1 1 − x = ∑ n = 0 ∞ x n \frac {1}{1-x}=\sum_{n=0}^{\infty}x^n 1−x1=∑n=0∞xn
1 ( 1 − x ) 2 = ∑ n = 0 ∞ ( n + 1 ) x n \frac{1}{(1-x)^2}=\sum_{n=0}^{\infty}(n+1)x^n (1−x)21=∑n=0∞(n+1)xn
2 ( 1 − x ) 3 = ∑ n = 2 ∞ n ( n − 1 ) x n − 2 \frac{2}{(1-x)^3}=\sum_{n=2}^{\infty}n(n-1)x^{n-2} (1−x)32=∑n=2∞n(n−1)xn−2
6 ( 1 − x ) 4 = ∑ n = 3 ∞ n ( n − 1 ) ( n − 2 ) x n − 3 \frac{6}{(1-x)^4}=\sum_{n=3}^{\infty}n(n-1)(n-2)x^{n-3} (1−x)46=∑n=3∞n(n−1)(n−2)xn−3

f ( x ) = a 0 + a 1 x 1 1 ! + a 2 x 2 2 ! + . . . + a n x n n ! f(x) = a_0 +a_1\frac{x_1}{1!}+a_{2}\frac{x^2}{2!}+...+a_{n}\frac{x^n}{n!} f(x)=a0+a11!x1+a22!x2+...+ann!xn
e a x = 1 + a x 1 ! + a 2 x 2 2 ! + . . . + a n x n n ! + . . . e^{ax} = 1+a\frac{x}{1!}+a^2\frac{x^2}{2!}+...+a^n\frac{x^n}{n!}+... eax=1+a1!x+a22!x2+...+ann!xn+...
e − x = 1 − x 1 ! + x 2 2 ! + . . . + ( − 1 ) n x n n ! . . . e^{-x}=1-\frac{x}{1!}+\frac{x^2}{2!}+...+(-1)^n\frac{x^n}{n!}... e−x=1−1!x+2!x2+...+(−1)nn!xn...
e x = 1 + x 1 ! + x 2 2 ! + . . . + x n n ! . . . e^{x}=1+\frac{x}{1!}+\frac{x^2}{2!}+...+\frac{x^n}{n!}... ex=1+1!x+2!x2+...+n!xn...
s i n ( x ) = x 1 + x 3 3 ! + x 2 n − 1 ( 2 n − 1 ) ! + . . . = e x − e − x 2 sin(x) = \frac{x}{1}+\frac{x^3}{3!}+\frac{x^{2n-1}}{(2n-1)!}+...=\frac{e^x - e^{-x}}{2} sin(x)=1x+3!x3+(2n−1)!x2n−1+...=2ex−e−x
c o s ( x ) = 1 + x 2 2 ! + x 4 4 ! + . . . + x 2 n 2 n ! + . . . = e − x + e x 2 cos(x)=1+\frac{x^2}{2!}+\frac{x^4}{4!}+...+\frac{x^{2n}}{2n!}+...=\frac{e^{-x}+e^x}{2} cos(x)=1+2!x2+4!x4+...+2n!x2n+...=2e−x+ex


2m 1n 1r

组合 球相同 盒子不同 不能是空 C n − 1 m − 1 \quad C_{n-1}^{m-1} Cn−1m−1







数的拆分


把正整数 拆分成 a b c 的和的方法P(n)
1 ( 1 − x a ) ( 1 − x b ) ( 1 − x c ) = ( 1 + x a + x 2 a + . . . ) ( 1 + x b + x 2 b + . . . ) ( 1 + x c + x 2 c + . . . ) \frac{1}{(1-x^a)(1-x^b)(1-x^c)}=(1+x^a+x^{2a}+...)(1+x^b+x^{2b}+...)(1+x^c+x^{2c}+...) (1−xa)(1−xb)(1−xc)1=(1+xa+x2a+...)(1+xb+x2b+...)(1+xc+x2c+...)

( 1 + x ) ( 1 + x 2 ) ( 1 + x 3 ) ( 1 + x 4 ) (1+x)(1+x^2)(1+x^3)(1+x^4) (1+x)(1+x2)(1+x3)(1+x4)

1 − x 2 = 1 + x 1 − x 1-x^2 = \frac {1+x}{1-x} 1−x2=1−x1+x
1 + x 2 = 1 − x 4 1 − x 2 1+x^2 = \frac{1-x^4}{1-x^2} 1+x2=1−x21−x4
1 − x 2 n 1 − x = 1 + x + x 2 + . . . + x 2 n − 1 \frac{1-x^{2n}}{1-x}=1+x+x^2+...+x^{2n-1} 1−x1−x2n=1+x+x2+...+x2n−1






递推关系






F n − F n − 1 − F n − 2 = 0 F n − 1 − F n − 2 − F n − 3 = 0 F_n-F_{n-1}-F_{n-2}=0\\F_{n-1}-F_{n-2}-F_{n-3}=0 Fn−Fn−1−Fn−2=0Fn−1−Fn−2−Fn−3=0


C ( x ) = x n − b 1 x n − 1 − b 2 x n − 2 . . . = 0 C(x)=x^n-b_1x^{n-1}-b_2x^{n-2} ...=0 C(x)=xn−b1xn−1−b2xn−2...=0
常系数线性齐次递推关系
1.递推关系—
2.特征方程 线性齐次方程
3.求解-----特征根 q
由 a n = q n a_n=q^n an=qn是方程的解 写出通解的形式,
将初值带入即可得到递推关系


{ a n = 2 a n − 1 + a n − 2 − 2 a n − 3 ( n ≥ 3 ) a 0 = 1 , a 1 = 2 ; a 2 = 0 \begin{cases} a_n=2a_{n-1}+a_n-2-2a_{n-3} \; (n\ge 3)\\ a_0=1,a_1=2;a_2=0\\ \end{cases} {an=2an−1+an−2−2an−3(n≥3)a0=1,a1=2;a2=0
求递推关系
x 3 − 2 x 2 − x + 2 = 0 x^3-2x^2-x+2=0 x3−2x2−x+2=0
(x+1)(x-1)(x-2)=0
特征根是 -1 1 2
q 1 = 1 q 2 = − 1 q 3 = 2 q_1= 1 \quad q_2= -1 \quad q_3=2 q1=1q2=−1q3=2
通解形式为 a n = c 1 q n + c 2 q n + c 3 q n a_n=c_1q^n+c_2q^n+c_3q^n an=c1qn+c2qn+c3qn 有几个根有几项

q 最终为1,忽略掉了


x 2 − 2 x + 1 = 0 x^2-2x+1=0 x2−2x+1=0
特征根相同时, q 1 = q 2 = 1 a n = c 1 + c 2 n q_1=q_2=1 \\ a_n= c_1 +c_2n q1=q2=1an=c1+c2n

{ a n = − a n − 1 + 3 a n − 2 + 5 a n − 3 + 2 a n − 4 ( n ≥ 4 ) a 0 = 1 , a 1 = 0 , a 2 = 1 , a 3 = 2 \begin{cases} a_n=-a_{n-1}+3a_n-2+5a_{n-3}+2a_{n-4} \; (n\ge 4)\\ a_0=1,a_1=0,a_2=1,a_3=2\\ \end{cases} {an=−an−1+3an−2+5an−3+2an−4(n≥4)a0=1,a1=0,a2=1,a3=2
x 4 + x 3 − 3 x 2 − 5 x − 2 = 0 q 1 = q 2 = q 3 = − 1 , q 4 = 2 x^4+x^3-3x^2-5x-2=0\\ q1=q2=q3=-1 ,q4=2 x4+x3−3x2−5x−2=0q1=q2=q3=−1,q4=2多项式除法
a n = c 1 ( − 1 ) n + c 2 n ( − 1 ) n + c 3 n 2 ( − 1 ) n + c 4 2 n a_n=c_1(-1)^n +c_2n(-1)^n+c_3n^2(-1)^n+c_42^n an=c1(−1)n+c2n(−1)n+c3n2(−1)n+c42n
{ a 0 = c 1 + c 4 = 1 a 1 = − c 1 − c 2 − c 3 + 2 ∗ c 4 = 0 a 2 = c 1 + c 2 ∗ 2 + 4 c 3 + c 4 ∗ 4 = 1 a 3 = − c 1 − 3 c 2 − 9 c 3 + 8 c 4 = 2 \begin{cases} a_0=c_1+c_4 = 1 \\ a_1=-c_1-c_2-c_3+2*c_4=0\\ a_2 = c_1 + c_2*2+4c_3+c_4*4=1\\ a_3 = -c_1 -3c_2-9c_3+8_c4=2 \end{cases} ⎩ ⎨ ⎧a0=c1+c4=1a1=−c1−c2−c3+2∗c4=0a2=c1+c2∗2+4c3+c4∗4=1a3=−c1−3c2−9c3+8c4=2
c 1 = 42 52 , c 2 = − 29 52 , c 3 = 7 52 , c 4 = 10 52 c_1=\frac{42}{52},c_2=-\frac{29}{52},c_3=\frac{7}{52},c_4=\frac{10}{52} c1=5242,c2=−5229,c3=527,c4=5210
a n = 42 52 ( − 1 ) n − 29 52 n ( − 1 ) n + 7 52 n 2 ( − 1 ) n + 10 52 2 n a_n=\frac{42}{52}(-1)^n-\frac{29}{52}n(-1)^n+\frac{7}{52}n^2(-1)^n+\frac{10}{52}2^n an=5242(−1)n−5229n(−1)n+527n2(−1)n+52102n

x 3 + 6 x 2 + 12 x + 8 = 0 ( x + 2 ) 3 = 0 x^3+6x^2+12x+8=0\\ (x+2)^3=0 x3+6x2+12x+8=0(x+2)3=0
( c 1 + c 2 n + c 3 n 2 = a n (c_1+c_2n+c_3n^2=a_n (c1+c2n+c3n2=an

常系数线性非齐次递推关系
1.找出递推关系
2.找出齐次递推关系,求出齐次的通解,然后求特解,从而得到递推关系
汉诺塔递推关系

求解齐次方程 a n − 2 a n − 1 = 0 a_n-2a_{n-1}=0 an−2an−1=0
特征方程 q =2
a n ∗ = c ∗ 2 n a_n^*=c *2^n an∗=c∗2n
由于f(n)=1 (上面丢掉的)


m=1 n=1 k=0 an=A
a2=3 = c1*2^n+A
A=-1



相关文章:
[组合数学]母函数与递推关系
文章目录 母函数---解决计数组合 球相同 盒子不同 不能是空 C n − 1 m − 1 \quad C_{n-1}^{m-1} Cn−1m−1数的拆分 递推关系常系数线性齐次递推关系常系数线性非齐次递推关系汉诺塔递推关系 母函数—解决计数 普母函数—组合问题 指母函数—排列问题 f(x) ∑ i 1 n a i…...
opencv膨胀腐蚀
OpenCV 是一个开源的计算机视觉库,它包含了许多图像处理的功能,其中膨胀和腐蚀是两种常用的形态学操作。 膨胀(Dilation):膨胀操作是将图像中的高亮区域(白色像素)扩张,从而填充低亮…...
ARM的读写内存指令与栈的应用
1.基础读写指令 写内存指令:STR MOV R1, #0xFF000000 MOV R2, #0x40000000 STR R1, [R2] 将R1寄存器中的数据写入到R2指向的内存空间 需注意,此命令是将R1中的数据写给R2所指向的内存空间,而不是直接把R1的数据赋给R2,R2寄存器…...
2022年平均工资出炉,IT行业又是第一
根据5月9日国家统计局最新资料显示,2022年,全国城镇非私营单位就业人员年平均工资为114029元,比上年增长6.7%,扣除通胀后实际增长4.6%。其中,行业间的差距相当明显。根据资料显示,2022年无论是在私营单位还…...
ov2640子设备核心操作详细分析
ov2640子设备核心操作详细分析 文章目录 ov2640子设备核心操作详细分析ov2640_subdev_core_ops核心操作获取寄存器值ov2640_g_register设置寄存器值ov2640_s_registeri2c_smbus_xferi2c_imx_xferi2c_smbus_xfer_emulatedi2c_transfer__i2c_transfer 设置ov2640的电源ov2640_s_p…...
MATLAB语句实现方阵性质的验证
系列文章目录 MATLAB绘图函数的相关介绍——海底测量、二维与三维图形绘制 MATLAB求函数极限的简单介绍 matlab系统环境思维导图 文章目录 系列文章目录 1. MATLAB语句验证方阵的六个性质如下 2. 六个性质的解释如下 3. 使用随机矩阵进行验证的代码示例如下 总结 前言 …...
使用Springboot AOP进行请求接口异常监控
常用注解 Aspect 切面类 Before 前置 AfterReturning 后置 Around 环绕 AfterThrowing 异常 切入点设置 execution(public * *(..)) 定义任意公共方法的执行 execution(* set*(..)) 定义任何一个以"set"开始的方法的执行 execution(* com.sys.service.UserService…...
【云原生|Kubernetes】05-Pod的存储卷(Volume)
【云原生Kubernetes】05-Pod的存储卷(Volume) 文章目录 【云原生Kubernetes】05-Pod的存储卷(Volume)简介Volume类型解析emptyDirHostPathgcePersistentDiskNFSiscsiglusterfsceph其他volume 简介 Volume 是Pod 中能够被多个容器访问的共享目录。 Kubern…...
Python实现数据结构
文章目录 一、Python实现数据结构1.1 python实现单向链表1.2 python实现单向循环链表1.3 python实现双向链表 一、Python实现数据结构 1.1 python实现单向链表 singleLinkedList.py class SingleNode:"""the node of single link list"""def …...
esp32CAM环境安装教程---串口驱动安装
前言 (1)本人安装好arduino 的ESP32环境之后, 发现一直下载不进去程序。一直说Cannot configure port, something went wrong. Original message: PermissionError。 (2)查阅了很多资料,用了各种办法&#…...
Java中List和Array转换
文章目录 List -> Array1. 调用toArray()方法直接返回一个Object[]数组:2. 给toArray(T[])传入一个类型相同的Array,List内部自动把元素复制到传入的Array中:3. 通过List接口定义的T[] toArray(IntFunction<T[]> generator)方法&…...
如何能确定数据库中root用户的密码是什么
如果您无法确定数据库中 root 用户的密码,有几种方法可以尝试找回或重置密码: 1. 使用已知密码:如果您有之前设置的 root 用户密码,可以使用该密码进行登录。 2. 查找密码文件:在某些情况下,MariaDB 可能…...
由浅入深Netty协议设计与解析
目录 1 为什么需要协议?2 redis 协议举例3 http 协议举例4 自定义协议要素4.1 编解码器4.2 什么时候可以加 Sharable 1 为什么需要协议? TCP/IP 中消息传输基于流的方式,没有边界。 协议的目的就是划定消息的边界,制定通信双方要…...
iptables防火墙(1)
iptables防火墙 一、iptables概述二、netfilter/iptables 关系三、四表五链1.四表2.五链 四、规则链之间的匹配顺序五、规则链内的匹配顺序六、iptables安装与配置七、常用的控制类型八、常用的管理选项九、规则命令1.添加新规则2.查看规则列表3.设置默认策略4.删除规则5.清空规…...
第九章 Productions最佳实践 - Productions开发的最佳实践
文章目录 第九章 Productions最佳实践 - Productions开发的最佳实践Productions开发的最佳实践项目目标项目交付文档 第九章 Productions最佳实践 - Productions开发的最佳实践 Productions开发的最佳实践 本章是一个总体概述,旨在帮助团队成员为从事生产项目做好…...
RocketMQ 怎么实现的消息负载均衡以及怎么能够保证消息被顺序消费
一、RocketMQ 怎么实现的消息负载均衡 RocketMQ是一种开源的分布式消息中间件,它使用了一种称为消息负载均衡的机制来实现消息的分发和消费的负载均衡。RocketMQ的消息负载均衡主要是通过以下两个方面实现的: 消息队列分组(Message Queue G…...
【随笔记】全志 T507 PF4 引脚无法被正常设置为中断模式的问题分析
相关信息 硬件平台:全志T507 系统版本:Android 10 / Linux 4.9.170 问题描述:PF4 无法通过标准接口设置为中断模式,而 PF1、PF2、PF3、PF5 正常可用。 分析过程 一开始以为是引脚被其它驱动占用引起,或者该引脚不具…...
人手一个 Midjourney,StableStudio 重磅开源!
人手一个 Midjourney,StableStudio 重磅开源! Stability AI 公司在上个月 19 号推出了 Alpha 版本 StableLM 大语言模型,包含了 30 亿和 70 亿参数,并且支持商用。如今他们再次推出了 AI 图像生成平台 StableStudio,这…...
iptables防火墙(2)
iptables防火墙(2) 一、SNATSNAT应用环境SNAT原理SNAT转换前条件扩展 二、DNATDNAT应用环境DNAT原理DNAT转换前提条件扩展 三、防火墙规则的备份和还原导出(备份)所有表的规则导入(还原)规则 一、SNAT SNA…...
Windows和Kali上使用proxychains代理流量
Windows和Kali上使用proxychains代理流量 PS. 本文演示都是在kali进行的,如有出入还请联系我哦1. Linux(Debian)1.1. 检查一下是否有proxychains1.2 修改config文件 2. Linux(Debian)安装proxychians43. Windows3.1 下载3.2 配置 4. Windows下的配置5. 测试 PS. 写这…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
Spring Security 认证流程——补充
一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
