当前位置: 首页 > news >正文

【python】pytorch包(第二章)API使用与介绍

1> nn.Module (用于构建模型的底层逻辑)

介绍

nn.Module 是 torch.nn 中的一个类,是pytorch中自定义网络的基类

  1. __init__需要调用super方法,继承父类属性和方法
  2. forward方法必须实现,用来定义网络的向前计算的过程

例:y = w*x + b 的拟合模型

构建

from torch import nn
class Lr(nn.Module): #构建模型逻辑def __init__(self): #定义该层super(Lr,self).__init__() #继承父类的init参数self.linear = nn.Linear( aa , bb ) #该层网络的输入数据的维度为aa,输出数据的维度为bbdef forward(self,x): #即 如何由输入的数据x得到输出的结果outout = self.linear(x)return out

使用

#实例化模型
model = Lr()
#传入数据,计算结果
pred_y = model(x)

2> 优化器类 optimizer

介绍

优化器是torch为我们封装的用来更新参数的方法

设定优化器

  1. torch.optim.SGD(参数, lr=学习率)
    SGD(stochastic gradient descent, 随机梯度下降)
    ”参数“指: 模型中需要被更新的参数;
    ”参数“一般用model.parameters()函数来获取,会获取所有requires_grad=True的参数
    ”学习率“:默认为0.001

  2. torch.optim.Adam(参数, lr=学习率)

使用优化器

1. 步骤:
step 1. 优化器实例化
step 2. 将所有参数的梯度的值,初始化为0
step 3. 反向传播,更新梯度的值
step 4. 参数值被更新
2. 代码样例:

import optim from torch
#step 1. 优化器实例化
optimizer = optim.SGD(model.parameters(),lr=1e-3)
#待更新参数为model.parameters()
#学习率learning rate = 1e-3
#step 2. 将所有参数的梯度的值,初始化为0
optimizer.zero_grad() #参数归零函数
#step 3. 反向传播,更新梯度的值
loss.backward()
#step 4. 更新参数值
optimizer.step()

优化器的算法介绍

1> 梯度下降法

(1) BGD 梯度下降法 (batch gradient descent)

每次迭代都将所有样本送入,将全局样本的均值作为参考。
简称为:全局优化
缺点: 每次都要跑全部样本,速度慢

(2) SGD 随机梯度下降法(Stochastic gradient descent)

每次从所有样本中,随机抽取一个样本进行学习
优点: 解决了BGD算法 速度慢的问题
缺点: 可能被某个单个异常数据点影响
Python的torch包中的API调用方法: torch.optim.SGD()

(3) MBGD 小批量梯度下降法(Mini-batch gradient descent)

介于(1)和(2)之间的算法,每次选取一组样本进行学习

梯度下降法的劣势:

过于依赖于合适的学习率
学习率较小时,会导致收敛速度慢;
学习率较大时,会导致有可能跳过最优解,在最值点左右摆动幅度较大

2> AdaGrad

采取动态调整学习率的方法,解决梯度下降法的劣势
【个人理解:就是把 爬山算法 换成了 模拟退火算法

3> 动量法 和 RMSProp算法

采取动态调整梯度的移动指数,解决梯度下降法的劣势
【个人理解:也是把 爬山算法 换成了 模拟退火算法

4> Adam算法

相当于 AdaGrad法 和 RMSProp法 的结合
优势 更快达到最优解
劣势 有可能学习得更慢(因为最优解很难找到,而前面的算法不一定会找到最优解,而是误差较大的最优解)
Python的torch包中的API调用方法: torch.optim.Adam()

这下就可以看懂第一章的线性回归代码的意思是什么了

相关文章:

【python】pytorch包(第二章)API使用与介绍

1> nn.Module (用于构建模型的底层逻辑) 介绍 nn.Module 是 torch.nn 中的一个类,是pytorch中自定义网络的基类 __init__需要调用super方法,继承父类属性和方法forward方法必须实现,用来定义网络的向前计算的过程…...

Linux驱动基础(SR501人体感应模块)

文章目录 前言一、SR501模块介绍二、设备树编写三、驱动编写1.确定主设备号2.编写file_operations结构体3.注册file_operations结构体4.出口函数编写5.probe函数和remove函数编写6.中断编写7.测试程序编写8.全部驱动程序 总结 前言 本篇文章将给大家介绍一下SR501驱动程序的编…...

Android Studio Flamingo (火烈鸟) 升级踩坑记录

由于想要验证Compose最新的debug特性,而我目前使用的版本(Dolphin 小海豚)不支持,查看官网说明需要最新版本,所以不得已进行了一下Android Studio版本升级,过程中遇到一些问题,本文仅做记录。&a…...

【JAVA凝气】异常篇

哈喽~大家好呀,这篇来看看JAVA异常篇。 目录 一、前言 二、Exception 异常 1、Java 的非检查性异常 2、Java 检查性异常类 三、Error 错误 四、捕获异常 五、多重捕获块 六、throws/throw 关键字 七、自定义异常类 八、图书推荐 一、前言 异常是程序中的一…...

C++中的函数模板

目录 1. 什么是函数模板? 2. 如何定义函数模板? 3. 如何使用函数模板? 4. 函数模板与函数重载的区别是什么? 5. 函数模板与类模板有何异同点? 1. 什么是函数模板? - 函数模板是一种通用的函数描述&…...

MapReduce【Shuffle-Combiner】

概述 Conbiner在MapReduce的Shuffle阶段起作用,它负责局部数据的聚合,我们可以看到,对于大数据量,如果没有Combiner,将会在磁盘上写入多个文件等待ReduceTask来拉取,但是如果有Combiner组件,我们…...

postman接口自动化测试

Postman除了前面介绍的一些功能,还有其他一些小功能在日常接口测试或许用得上。今天,我们就来盘点一下,如下所示: 1.数据驱动     想要批量执行接口用例,我们一般会将对应的接口用例放在同一个Collection中&#xf…...

历经70+场面试,我发现了大厂面试的套路都是···

今年的金三银四刚刚过去,我又想起了我在去年春招时面试了50余家,加上暑期实习面试了20余家,加起来也面试了70余场的面试场景了。 基本把国内有名的互联网公司都面了一遍,不敢说自己的面试经验很丰富,但也是不差的。 …...

可视区域兼容性问题的思考及方法封装

今日在复习可视化尺寸获取时突发奇想,为什么要在怪异模式下使用document.body.clientWidth,在标准模式下使用document.documentElement.clientWidth?以及是否在IE8及以下的版本中其中一个获取方式将返回undefined或0。  出于该问题的思考&am…...

安全工具 | CMSeeK [指纹识别]

0x00 免责声明 本文仅限于学习讨论与技术知识的分享,不得违反当地国家的法律法规。对于传播、利用文章中提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,本文作者不为此承担任何责任,一旦造成后果请自行承担…...

Android新logcat使用技巧

Android新logcat使用技巧 logcat新UI出现后,我常困惑于怎么过滤log,和以前的UI差异比较大,新UI界面结构如下: 这个新的 logcat 的问题是如何过滤信息并不是很明显。 获取应用的日志信息 要获取我们当前调试应用的日志信息&…...

使用Makefile笔记总结

文章目录 一、简单了解Makefile1.1 Makefile示例1.2 基本规则1.3 make是如何工作的1.4 使用变量1.5 make自动推导 二、变量2.1 变量的定义和引用2.2 变量的两种高级用法2.3 override 和 define 关键字2.4 环境变量与目标变量2.5 自动变量 三、Makefile规则3.1 通配符3.2 目标依…...

npm下载依赖项目跑不起来--解决方案

code ERESOLVE npm ERR! ERESOLVE unable to resolve dependency tree npm ERR! npm ERR! While resolving: vue-element-admin4.4.0 npm ERR! Found: webpack4.46.0 npm ERR! node_modules/webpack npm ERR! webpack“^4.23.0” from the root project npm ERR! npm ERR! Coul…...

SolVES模型生态系统服务功能社会价值评估

查看原文>>>SolVES 模型生态系统服务功能社会价值评估(基于多源环境QGIS、PostgreSQL、ArcGIS、Maxent、R语言) 目录 第一章、理论基础与研究热点 第二章、SolVES 4.0 模型运行环境配置 第三章、SolVES 4.0 模型运行 第四章、数据获取与入…...

Godot引擎 4.0 文档 - 入门介绍 - 学习新功能

本文为Google Translate英译中结果,DrGraph在此基础上加了一些校正。英文原版页面: Learning new features — Godot Engine (stable) documentation in English 学习新功能 Godot 是一个功能丰富的游戏引擎。有很多关于它的知识。本页介绍了如何使用…...

如何进行MySQL漏洞扫描

MySQL是一款广泛使用的关系型数据库管理系统,但由于其复杂的结构和功能,也存在不少安全漏洞,容易被黑客攻击。为了解决这些安全问题,进行MySQL漏洞扫描是必要的。那么MySQL怎么进行漏洞扫描?如何进行漏洞扫描?接下来就让小编带大…...

C语言函数大全-- x 开头的函数(3)

C语言函数大全 本篇介绍C语言函数大全-- x 开头的函数 1. xdr_opaque 1.1 函数说明 函数声明函数功能bool_t xdr_opaque(XDR *xdrs, char *buf, u_int len);用于编码或解码任意长度的二进制数据 参数: xdrs : 指向 XDR 数据结构的指针,表…...

计算机图形学-GAMES101-12阴影

Shadow mapping 问题的提出 我们之前在进行着色时,对于每个物体仅考虑自己,而不考虑其他物体对它的影响。限定在光栅化中,如何解决阴影问题呢?阴影能被摄像机看到,但不能被光源所照亮。经典的Shadow mapping只能处理…...

iOS_Swift高阶函数

iOS_Swift高阶函数 #mermaid-svg-NxX1czIESDq47OQw {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-NxX1czIESDq47OQw .error-icon{fill:#552222;}#mermaid-svg-NxX1czIESDq47OQw .error-text{fill:#552222;stroke:#…...

探索Vue的组件世界-组件复用

目录 Mixin【混入】 缺陷 HOC(higher order component)【高阶组件】 相比较Mixin的优点: 不足: Renderless组件【函数式组件,无渲染组件,Vue社区使用比较多的一种业务复用模式】 优点: M…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

【Oracle APEX开发小技巧12】

有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...