当前位置: 首页 > news >正文

【scipy.sparse】diags()和dia_matrix()的区别

【scipy.sparse】diags()和dia_matrix()的区别

文章目录

  • 【scipy.sparse】diags()和dia_matrix()的区别
    • 1. 介绍
    • 2. 代码示例
      • 2.1 sp.diags()
        • 2.1.1 第一种用法(data+offsets)
        • 2.1.2 广播(需要指定shape)
        • 2.1.3 只有一条对角线
      • 2.2 sp.dia_matrix()
        • 2.2.1 典型用法(与sp.diags()的这种用法相同、看上面2.1.1)
        • 2.2.2 可能会混淆的用法


1. 介绍

经常遇到sp.diags() 和 sp.dia_matrix(), 还傻傻分不清楚。

  • sp.diags() 是对角的元素,这个对角的元素有三个,每一个都是一个列表形式,它的用途要比sp.dia_matrix()的多,具体的一会儿看例子。
  • sp.dia_matrix通过两个数组确定: data和offsets。其中data对角线元素的值;offsets:第i个offsets是当前第i个对角线和主对角线的距离。data[k:]存储了offsets[k]对应的对角线的全部元素。

2. 代码示例

2.1 sp.diags()

2.1.1 第一种用法(data+offsets)

  • 第一个参数的第一个元素是[1,2,3,4],对应的第2个参数的数是0(相当于主对角线偏移为0,其实就是主对角线),所以1,2,3,4放在主对角线位置。
  • 第1个参数的第2个元素是[1,2,3],对应的第2个参数的数是-1,所以1,2,3放在主对角线靠下偏1的对角线位置。
  • 第1个参数的第三个元素是[1,2],对应的第2个参数的数是2,所以1,2放在主对角线靠上偏2的对角线位置。
  • 其余地方补0就好。因为对角矩阵肯定是个方阵,所以就最后就是4*4的方阵。
>>> data = [[1, 2, 3, 4], [1, 2, 3], [1, 2]]  
# 使用diags函数,该函数的第二个变量为对角矩阵的偏移量,
0:代表不偏移,就是(0,0)(11)(22)(33)...这样的方式写
k:正数:代表像正对角线的斜上方偏移k个单位的那一列对角线上的元素。
-k:负数,代表向正对角线的斜下方便宜k个单位的那一列对角线上的元素,>>> diags(data, [0, -1, 2]).toarray()
array([[1, 0, 1, 0],[1, 2, 0, 2],[0, 2, 3, 0],[0, 0, 3, 4]])

2.1.2 广播(需要指定shape)

# 这种情况可以广播(其实就是每个对角线的元素是相同的),但需要指定矩阵大小。>>> diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)).toarray()
array([[-2.,  1.,  0.,  0.],[ 1., -2.,  1.,  0.],[ 0.,  1., -2.,  1.],[ 0.,  0.,  1., -2.]])

2.1.3 只有一条对角线

# 指定offset为1
>>> diags([1, 2, 3], 1).toarray()
array([[ 0.,  1.,  0.,  0.],[ 0.,  0.,  2.,  0.],[ 0.,  0.,  0.,  3.],[ 0.,  0.,  0.,  0.]])# 不指定offsets的话,默认为0
>>> diags([1, 2, 3, 4]).toarray()
array([[ 1.,  0.,  0.,  0.],[ 0.,  2.,  0.,  0.],[ 0.,  0.,  3.,  0.],[ 0.,  0.,  0.,  4.]])

2.2 sp.dia_matrix()

sp.dia_matrix()的用法比较单一。注意:与sp.diags()记混则会出现错误的结果。

2.2.1 典型用法(与sp.diags()的这种用法相同、看上面2.1.1)

>>> data = np.array([[1, 2, 3, 4], [5, 6, 0, 0], [0, 7, 8, 9]])
>>> offsets = np.array([0, -2, 1])
>>> dia_matrix((data, offsets), shape=(4, 4)).toarray()
array([[1, 7, 0, 0],[0, 2, 8, 0],[5, 0, 3, 9],[0, 6, 0, 4]])

2.2.2 可能会混淆的用法

# 注意这种用法不会产生如2.1.3的情况,而是出现下面的结果:
>>> dia_matrix([1,2,3]).toarray()
array([[1, 2, 3]])

对于sp.dia_matrix(),其他的用法,则会报错。

相关文章:

【scipy.sparse】diags()和dia_matrix()的区别

【scipy.sparse】diags()和dia_matrix()的区别 文章目录【scipy.sparse】diags()和dia_matrix()的区别1. 介绍2. 代码示例2.1 sp.diags()2.1.1 第一种用法(dataoffsets)2.1.2 广播(需要指定shape)2.1.3 只有一条对角线2.2 sp.dia_…...

java ssm自行车在线租赁系统idea

当前自行车在社会上广泛使用,但自行车的短距离仍旧不能完全满足广大用户的需求。自行车在线租赁系统可以为用户提供租赁用车等功能,拥有较好的用户体验.能实时在线租赁提供更加快捷方便的租车方式,解决了常见自行车在线租赁系统较为局限的自行车归还功能。 通过使用本系统&…...

GAN和CycleGAN

文章目录1. GAN 《Generative Adversarial Nets》1.1 相关概念1.2 公式理解1.3 图片理解1.4 熵、交叉熵、KL散度、JS散度1.5 其他相关(正在补充!)2. Cycle GAN 《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Ne…...

源码项目中常见设计模式及实现

原文https://mp.weixin.qq.com/s/K8yesHkTCerRhS0HfB0LeA 单例模式 单例模式是指一个类在一个进程中只有一个实例对象(但也不一定,比如Spring中的Bean的单例是指在一个容器中是单例的) 单例模式创建分为饿汉式和懒汉式,总共大概…...

KDNM5000-10A-2剩余电流保护器测试仪

一、产品概述 KDNM5000-10A-2型剩余电流保护器测试仪(以下简称测试仪),是本公司改进产品,是符合国家标准《剩余电流动作保护器》(GB6829—95)中第8.3条和GB16917.1—1997中第9.9条验证AC型交流脱扣器动作特性要求的专用测试仪器。…...

C++实现线程池

C实现线程池一、前言二、线程池的接口设计2.1、类封装2.2、线程池的初始化2.3、线程池的启动2.4、线程池的停止2.5、线程的执行函数run()2.6、任务的运行函数2.7、等待所有线程结束三、测试线程池四、源码地址总结一、前言 C实现的线程池,可能涉及以下知识点&#…...

2023最新Java面试手册(性能优化+微服务架构+并发编程+开源框架)

Java面试手册 一、性能优化面试专栏 1.1、 tomcat性能优化整理 1.2、JVM性能优化整理 1.3、Mysql性能优化整理 二、微服务架构面试专栏 2.1、SpringCloud面试整理 2.2、SpringBoot面试整理 2.3、Dubbo面试整理 三、并发编程高级面试专栏 四、开源框架面试题专栏 4.1、Sprin…...

对灵敏度分析技术进行建模(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

完整爬虫学习笔记(第一章)

文章目录前言:fu:. 爬虫概述:hotdog:原理解剖:one: 服务器渲染:two: 前端JS渲染:fire: 第一个爬虫程序案例总结前言 最近正在学习Python网络爬虫的相关知识,鉴于本人Python水平有限 , 对Python并无太深的理解,所以此文章的主要目的在于抛砖引玉&#xf…...

会计师项目管理软件是什么,哪些必不可少的功能

欢迎阅读现代金融专业人士的会计师项目管理指南。在本文中,我们将深入探讨在基于项目的会计的各个方面使用项目管理方法的好处。我们还将教您面临哪些挑战以及如何为您的团队选择最佳工具。 为什么会计师的项目管理很重要? 在会计方面,目标始…...

第 8 章 优化

目录 8.1 优化概述 8.2 优化 SQL 语句 8.3 优化和指标 8.4 优化数据库结构 8.5 优化 InnoDB 表 8.6 优化 MyISAM 表 8.7 内存表的优化 8.8 了解查询执行计划 8.9 控制查询优化器 8.10 缓冲和缓存 8.11 优化锁定操作 8.12 优化 MySQL 服务器 8.13 衡量性能&#xff…...

剑指offer -- java题解

剑指offer -- java题解刷题地址1、数字在升序数组中出现的次数2、二叉搜索树的第k个节点3、二叉树的深度4、数组中只出现一次的两个数字5、和为S的两个数字6、左旋转字符串7、滑动窗口的最大值8、扑克牌顺子9、孩子们的游戏(圆圈中最后剩下的数)10、买卖股票的最好时机(一)刷题…...

若依ruoyi——手把手教你制作自己的管理系统【二、修改样式】

阿里图标一( ̄︶ ̄*)) 图片白嫖一((* ̄3 ̄)╭ ********* 专栏略长 爆肝万字 细节狂魔 请准备好一键三连 ********* 运行成功后: idea后台正常先挂着 我习惯用VScode操作 当然如果有两台机子 一个挂后台一个改前端就更好…...

2023.2.14每日一题——455. 分发饼干

每日一题题目描述解题核心解法一:双指针题目描述 题目链接:455. 分发饼干 假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。 对每个孩子 i,都有一个胃口值 g[i],…...

MySQL入门篇-MySQL常用字符函数小结

备注:测试数据库版本为MySQL 8.0 这个blog我们来聊聊常见的字符函数 函数名函数用途UPPER()返回大写的字符LOWER()返回小写的字符LTRIM()左边去掉空格TRIM()去掉空格RTRIM()右边去掉空格SPACE()返回指定长度的空格CONCAT()连接字符串CONCAT_WS()指定分隔符连接字符串CHAR_LEN…...

解决不同影像裁剪后栅格数据行列不一致问题

前言在处理栅格数据时,尽管用同一个矢量文件裁剪栅格数据,不同数据来源的栅格行列数也会出现不一致的情况。如果忽略或解决不好,会导致后续数据处理出现意想不到的误差或错误,尤其是利用编程实现数据处理时。因此,应当…...

visual studio2022配置opencv

标题:在vs下配置使用opencv 流程: 1、下载安装opencv 2、添加环境变量 3、vs中配置属性 4、使用 5、可能遇到的报错和解决 1、 下载安装opencv 官网下载地址: https://opencv.org/releases/ 我这里是windows环境,所以选择点击w…...

什么是销售管理?销售管理的五大职能

销售管理听起来很简单,似乎只是负责销售并确保客户满意,但事实上,它远不止于此。 销售管理的实际职能包括监督销售团队的工作,制定计划和设定目标,通常还包括确保销售流程的效率以获得最佳业务结果。 什么是销售管理…...

[CVPR‘22] EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks

paper: https://nvlabs.github.io/eg3d/media/eg3d.pdfproject: EG3D: Efficient Geometry-aware 3D GANscode: GitHub - NVlabs/eg3d总结: 本文提出一种hybrid explicit-implicit 3D representation: tri-plane hybrid 3D representation,该方法不仅有…...

Learning C++ No.9【STL No.1】

引言: 北京时间:2023/2/13/18:29,开学正式上课第一天,直接上午一节思想政治,下午一节思想政治,生怕我们……,但,我深知该课的无聊,所以充分利用时间,把我的小…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...

什么是VR全景技术

VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...