“黑铁时代”,地产人如何以客户视角加速房企数字化转型
本文从行业洞察、业务设计、数据建设以及实践探索四个部分详细阐述地产行业数字化的实践、思考和理解。
点击文末“阅读原文”,观看完整版直播回放并下载演讲文档。
一、洞察:房企经营思路的变化
企业的转型都是围绕着业务经营变化进行的,房企数字化转型也一样。受国家政策、市场环境、经济现状等因素影响,房企的经营思路从「大开发」向「大运营」转变,营销的思路也从「以房源为中心」向「以客户为中心」转变。
在这个过程当中,数字化转型和建设紧跟房企业务的发展,在每个阶段的变化也不一样。从最早的「以无纸化办公提效为目标的信息化」,到「以提升业务管理效率为目标的流程化」,逐步到如今的「数智一体化」。房地产从“白银时代”逐步走向“黑铁时代”,核心目标也由「去库存」转变为「客户持续经营」。这样的变化本质上是由地产行业自身特性所决定的——客户购房后会与房企建立长达数十年的联系。因此,长期的客户经营成了房企业务的重中之重。
当前,房企普遍面临两个问题:第一,客户数据资产的建立;第二,经营模式的变化。两者相辅相成:建立数据资产的目的是为了通过整合客户数据,提升企业数据能力,帮助其建立长线客户经营体系,而长期客户经营体系的业务转型,又驱动着数据体系的建设。
在考虑构建长期客户经营体系的时候,企业需要以客户为中心重新梳理地产业态的客户旅程。从典型的三大业态来看,整个客户旅程可以被归纳为:从营销板块的获客、到访、成交,流转到物业板块的基础物业和增值服务,最后到商业板块。在每一个业态当中,不同的业务阶段所涉及的业务场景都需要被设计出来。
当我们以客户为中心把每个业态设计的场景串联起来,就能够实现不同业态之间的客户信息流转、流量复用和数据赋能。例如:营销阶段所获取的用户兴趣偏好可以作为物业个性化服务的参考,反过来物业业态中的业主满意度、忠诚度可以被用来发展业主老带新等活动。
当然,这个流程其实做了简化抽象,实际情况会更复杂,例如物业的老业主复购会让客户重新进入营销阶段,而商业则可以独立形成闭环。在更多场景中,通常依赖于房企自身的业务结构、特点以及当前阶段的业务目标。
所以,当房企在设计以客户为中心的数字化经营蓝图时,要从最顶层的业务目标开始思考。关键增长目标是新房销售、物业费收缴、商业营收等。然后从关键目标拆解关键指标,例如新房销售的渠道费效占比、成交转化、业主满意度、多经的销售转化等。
基于此,再去梳理客户旅程,然后设计当中的应用场景,包括短期速赢和长期场景。典型的场景包括拓客阶段中的渠道优化、成交阶段的精准逼定、业务阶段对业主的个性化以及增值服务的拓展,最后是长期贯穿的大会员运营体系,利用存量资源激活,设计跨业态导流能力,以及全民营销的增长能力。
有了目标和场景,接着就是数据服务的能力。为了支撑跨业态场景,企业所需要的能力包括客户数据管理分析能力、标签构建和智能营销能力以及拉通多业态的会员中心服务能力。
最后,数据资产平台作为底层支撑,核心包括各业态数据的开发及治理,同时构建全业态 One ID 体系。
整体来看,房企数字化经营可以拆成两个关键问题去看待,第一,长期客户经营体系的设计,第二,数据基础建设。
二、设计:客户生命周期经营体系
长期客户经营体系,即客户生命周期经营体系。地产行业有其独特的客户生命周期划分方法:根据客户的生命周期和对企业的商业贡献度将客户进行分层,制定相应的经营方针。以开发业态为例,客户生命周期包括拓客线索阶段、到访机会阶段、认购成交后的准业主阶段以及最后的流失阶段。当然,企业也可以根据成交转化率进行价值判断,例如客户的信息完善度、到访次数、客户意向度、购买能力等。
客户分层后,房企需要基于客群特征制定不同的经营方案,例如业主的房产价值高、满意度高时,可以基于其品牌忠诚度去发展业主老带新等,而面对新业主在多经消费的贡献度,企业可以围绕其家庭结构、消费偏好等来制定。最后,策略落地过程中,要明确客群、权益、最佳时机、触点来完成策略触达。从生命周期的划分到价值分层,接着制定客群经营方针,然后策略落地,最终完成单一业态客户生命周期经营体系的设计。
对于房企来说,不同业态的客户经营有不同的生命周期和价值定义。如果从物业视角,就是从新业主收楼交付开始交付期,到初入住的磨合期,再到稳定期,通过多种经营和服务提升满意度到忠诚期,物业服务的环节基本上不存在流失,因为业主二手房买卖可能是另一条经营逻辑。而面向维权业主企业也需要制定对应经营方针让业主回归稳定,例如多经的社区电商,针对流失用户制定流失召回策略。
每个独立经营的板块都有完整的用户经营体系,以全业态或跨业态客户经营为视角,客户的生命周期就会变成客户价值即客户与房企发生业务交互产生的价值。从浅到深依次是:未发生业务行为的潜在客户,例如正在看房的客户、在商城未消费的客户;发生了业务行为的存量客户;发生深度业务交互行为(业主复购、物业增值服务)的老客户;经纪人客户,也就是地产行业的全民营销老带新。此时,我们会发现不同业态的客户生命周期会有对应的客户价值链。
以前,房企在不同业态的不同阶段面向同一个客户的服务是完全独立的。例如物业业态的老业主,在 B 楼盘看房时可能只是一个潜在阶段的线索。构建跨业态经营思路可以帮助房企拉通信息,例如基于忠诚度高的老业主的物业信息,针对性设计营销策略,推进其买房,完成老业主升级。
因此,构建跨业态客户生命周期经营体系,需要房企梳理不同场景的客户旅程,找到客户与企业互动的触点,进而设计场景,落地到业务动作中。
设计业务应用场景,需要以感知、决策、行动、反馈形成 SDAF 数据闭环。不一样的是,跨业态的客户经营体系,让房企在感知和反馈过程中拥有更多的数据来支撑决策,以全业态的视角去理解客户和企业之间的关系。
三、建设:多业态客户数据整合
接下来,我们围绕全业态生命周期的经营场景,探讨跨业态数据建设过程当中的实践和思考。
地产行业的客户数据整合难点体现在以下几方面:
数据采集难:业务链条长,强依赖线下场景,数据收集困难,例如客户在案场看房时产生的行为、意向、关注点。
多系统数据割裂:各系统、各板块独立建设,呈现烟囱式的数据现状。比如客户线上看房浏览行为和线下到访行为数据割裂,物业和营销的客户数据互相独立,业主画像不清晰很难发展老带新或者复购。
缺乏数据标准:不同业务系统的数据格式、规范不统一,导致数据在整合时涉及大量的治理工作。
数据可用性差:数据质量参差不齐,例如手机号码长度不对、带符号、身份证格式错误,不同系统的数据类型、ID 关联等不统一。
面对这些问题,房企可以按照数据开发、数据打通、数据应用的思路去做项目建设。
数据开发是为了解决数据缺漏的情况,例如容易被忽视的客户线上行为数据,这部分数据作为客户主动发生的行为,反映了客户的偏好特征和价值。例如神策与某房产平台合作过程中,针对线上看房这一场景,通过分析客户在 VR 看房里停留的时间、角度、位置等发现在厨房、卫生间停留更久的客户,到访和成交转化率更高,购房意向更高。这就是行为数据带来的价值。
数据打通涉及到各端的行为数据、大量业务系统的业务数据,甚至还可能涉及物联网、人行车行等数据。这需要企业梳理各业务的 ID 现状,设计用户关联方案,保障同一个客户在系统中被识别的唯一性。
数据应用也就是围绕业务场景的数据服务能力,例如实时人群圈选、标签导出、自动化营销策略、会员积分对账等能力。
数据规范是整个数据建设过程中更重要的环节。统一的指标口径、标签、元数据的规范、数据采集的规范等,是一项完整且涉及面众多的工程。因为各个系统和业态中,数据会不断新增,只有做好自上而下的数据规范管理,才能让数据体系可持续和健康地运转,支持业务的发展。
根据过往服务客户的实践经验,神策总结出值得房企关注的两点:
第一,One ID 建设。其难点体现在数据清洗工作以及 ID 关联方案的设计上。例如因为涉及多个系统和业态,要考虑 ID 数量、优先级、冲突解决方案、解绑和修复等问题,里面还会嵌套业务逻辑。
从数据角度,需要明确的 ID 含义、采集的节点和触点,用不同的对象定义来管理客户数据资产。例如,房企客户指的是已成交的业主,是通过身份证号识别需要重点经营的对象;可以用手机号、客户号、微信 Union ID 识别的对象是潜客,只能获取设备号、Cookie、Open ID 的对象是访客。
解决用户关联的问题,拉通客户在不同业态的信息,回归到业务场景里,企业就可以更好地使用这些存量客户资源做长期经营。
在做好跨业态用户关联之前,房企的营销流程往往是客户到访登记,获取其渠道报备信息、报备记录、接收到访记录或者其他兄弟盘的到访记录等。One ID 建设好之后,企业就可以利用存量客户去挖掘机会,例如可以通过业主的家庭成员新增、车辆登记变化,从而识别业主可能存在的改善需求,进而通过精准 Call 客、业主 App 的触点去获取线索,推荐精准房源,实现促进复购。
房企有大量的存量客户资源,与其砸广告去获新客,不如从老客户中挖掘,这样转化效率更高。但同时需要注意的是,这个过程在很大程度上依赖于企业能否做好客户数据的统一。
第二,数据规范。数据管理决定了企业数据建设的工作能否长久和持续的运作,也影响着传统企业数字化转型的效率。数据管理规范问题是一个自上而下的战略传递过程,也是一条从下往上的数据管控链条。
在这个三角矩阵里,涉及到数据管理的多个环节。战略层需要制定清晰的目标与规划,管控层通过平台和工具化能力实现数据的监控管理。往下是数据的标准和规范的制定,包括数据生产规范和数据对象本身的规范。再往下会涉及到业务规范的配合,例如案场接待、管家服务的标准流程制定,明确什么环节产生和采集数据以及线上运营的埋点规范等。
最后是人力资源基础。一个战略从上往下执行,成败往往都在于人。企业需要搭建专项组织,培养数据意识文化和能力,建立面向一线业务的培训体系等。整个过程涉及到组织、工具、能力的建设,需要强意志和强推动力来完成,这也是地产数字化转型必然要面临的一关。
接下来,分享一个数据建设成功的案例。
小吴是某企业长租公寓的租客,在深圳已租住 2 年,月租金 5000 元,根据其长租信息,企业可以构建用户标签,并根据其曾推荐好友入住这一行为判断小吴对品牌好感度较高。今年,该企业在深圳进行新楼盘蓄客,针对月供 6000 元左右的单身公寓,业务人员希望在长租公寓的租户里找到适龄、有支付能力且品牌好感度高的老租户,将其变成业主。通过存量客群圈选,小吴被选中为新楼盘蓄客的目标客户。于是,企业通过公寓 App 在小吴线上活跃的时间内针对性推送新盘,并在话术中明确“长租公寓用户可享折扣”等。
在该案例中,企业通过了解小吴的居住偏好、特性,制定精准的销售话术,成功将小吴从租户转化成业主。成为业主之后,小吴的会员积分、会员等级均有所提升,这个时候企业的商业运营便可以通过业主 App 给其推送消费券,并附带业主在商场消费可以进行积分抵扣、会员折扣、停车优惠等信息,于是小吴自然而然地成了商场的客户。交楼入住后,小吴又会与物业产生交互,包括客诉保修、参与等。比如,根据小吴的商场消费数据了解到小吴经常购买清洁类用品,那么就可以为小吴推荐家政保洁的服务等。通过以上个性化营销触达,小吴的用户体验持续提升,也成为了高忠诚度的业主,为企业带来的商业价值也不断提升。
再然后,企业也可以把小吴发展为业主经纪人,随着家庭结构变化,小吴可能会产生换房需求,那么他又会进入到新房营销流程里。
通过该案例,我们可以看到,打破数据壁垒之后,一个客户可以在不同业态中流转,与企业发生深度连结,实现客户价值的不断增长。同时,企业通过建立全业态客户资产,把存量客户的价值挖掘到极致,大大提升了业务转化效率,也实现了业态间的大会员联动。这就是多业态客户整合为房地产业务带来的意义和价值。
目前,神策在地产行业的跨业态数据平台建设实践中,核心帮助企业解决以下三大问题:
1、关于数据规范相关的问题。企业手动录入的数据质量差,经常出现手机号、证件号错误的情况,在后期转型导入大量业务数据时会非常麻烦,因此需要有比较好的入库校验规则来针对性处理。另外,数据标准不统一,例如有的系统手机号带区号、国家代码等,因为多供应商标准不统一导致同样的数据在不同的系统中数据类型不一致,所以企业需要充分梳理并规范数据。
2、关于用户关联方案的设计问题。企业需要充分考虑 ID 字段多类型的情况,例如华南的楼盘可能常有港澳台的客户,那么便要增加护照证件号类型。同时,需要充分考虑 ID 关联冲突和变更的规则,例如客户在某个前端修改了手机号,在业务上应该判断为新增还是变更?一个客户有多个微信号,那么应该给哪个微信 ID 发推送?这些问题需要有完善的关联方案,也要有能够灵活支持不同语义、自由关联、解绑修正和关联优先级配置的 ID-Mapping 能力。
3、关于数据平台外部的改造问题。考虑到房企数据平台外部改造会涉及很多业务场景,往往会关联周边业务系统、业务规则的改造,例如把客户标签传送至销售端、移动销售 App 接收和展示客户标签、销售人员手动实现移动端的标签回传、销售接待标准流程变化与设计等。数据平台完善之后,如果业务系统和业务流程无法支持企业数字化应用,场景落地将举步维艰。因此,我们建议企业同步进行相关系统改造和数据系统建设。
四、探索:项目设计和建设实践
针对客户数据平台建设,企业要梳理清楚做跨业态用户拉通的目的,明确业务战略、业务目标及场景,尽可能避免目标模糊、执行困难、售前扩展无边界、售后需求变更、项目返工、延期等情况。对此,企业需要制定好业务战略、明确业务目标,设计好业务场景,最后再落到项目的建设和数据本身。这个过程和地产楼盘建设开发异曲同工。
传统企业数字化转型是一个探索型工程,免不了在建设途中进行持续的探索迭代,但目标和设计依然要先行于建设,正所谓谋定而后动,知止而有得。这也是为了避免陷入行业的 IT 军备竞赛,本末倒置。
✎✎✎
【更多内容】
数字化浪潮下传统房企的破局之道
房产企业数字化转型快速落地
汽车行业数字化运营应该怎么做?
▼ 点击“阅读原文”,立即观看直播回放
相关文章:

“黑铁时代”,地产人如何以客户视角加速房企数字化转型
本文从行业洞察、业务设计、数据建设以及实践探索四个部分详细阐述地产行业数字化的实践、思考和理解。点击文末“阅读原文”,观看完整版直播回放并下载演讲文档。一、洞察:房企经营思路的变化企业的转型都是围绕着业务经营变化进行的,房企数…...

零入门kubernetes网络实战-14->基于veth pair、namespace以及路由技术,实现跨主机命名空间之间的通信测试案例
《零入门kubernetes网络实战》视频专栏地址 https://www.ixigua.com/7193641905282875942 本篇文章视频地址(稍后上传) 本篇文章继续提供测试案例: 基于veth pair、namespace以及路由技术,实现跨主机命名空间之间的通信 1、网络拓扑如下 2、网络拓扑构建…...

【pytorch框架】对模型知识的基本了解
文章目录TensorBoard的使用1、TensorBoard启动:2、使用TensorBoard查看一张图片3、transforms的使用pytorch框架基础知识1 nn.module的使用2 nn.conv2d的使用3、池化(MaxPool2d)4 非线性激活5 线性层6 Sequential的使用7 损失函数与反向传播8 优化器9 对现有网络的使…...
SUP桨板电动气泵方案——鼎盛合方案
SUP桨板是现时最热门的水上运动之一,它的全称是Stand Up Paddle,简称SUP。这项运动近几年在我国三亚等地区风靡一时,在网上经常看到一些运动博主或者明星网红晒出冲浪视频,刺激又惊险。SUP桨板为充气式桨板,需要通过充…...

小白系列Vite-Vue3-TypeScript:011-登录界面搭建及动态路由配置
前面几篇文章我们介绍的都是ViteVue3TypeScript项目中环境相关的配置,接下来我们开始进入系统搭建部分。本篇我们来介绍登录界面搭建及动态路由配置,大家一起撸起来......搭建登录界面登陆接口api项目登陆接口是通过mockjs前端来模拟的模拟服务接口Login…...

C语言( 缓冲区和重定向)
一.缓冲输入,无缓存输入 while((chgetchar()) ! #) putchar(ch); 这里getchar(),putchar()每次只处理一个字符(这里只是知道就好了),而我们使用while循环,当读到#字符时停止 而看到输出例子,第一行我们输入…...
编程思想、方法论和架构的类型及应用
概要编程思想是指在编写代码时所采用的基本思维方式和方法论。分类编程思想编程思想为软件开发提供了思维范式和指导思路,例如面向对象思想、函数式编程思想等,它们帮助程序员更好地抽象问题、组织代码、提高代码复用性和可维护性,包括一下几…...
【OA办公】OA流程审批大揭秘,带你看遍所有基础流程
流程审批,是所有企业的OA办公系统重要组成部分,是任何OA办公系统都不可缺少的。比起传统的纸张传阅、签批的审批模式浪费了大量的时间和成本,因此越来越多的企业采用OA这种全新的、高效的、智能的审批模式。流程审批除了这些好处,…...
《零基础入门数据结构与算法》专栏介绍
目录 前言 第一部分:重点 第二部分:题库 第三部分:测试 第四部分:实验 第五部分:试卷 总结 前言 本专栏主要分为五个部分: ① 重要知识点详解 ② 近百道练习题解析 ③ 数据结构与算法章节测试 …...

测试开发之Django实战示例 第九章 扩展商店功能
第九章 扩展商店功能在上一章里,为电商站点集成了支付功能,然后可以生成PDF发票发送给用户。在本章,我们将为商店添加优惠码功能。此外,还会学习国际化和本地化的设置和建立一个推荐商品的系统。本章涵盖如下要点:建立…...

【Spring】一文带你吃透AOP面向切面编程技术(下篇)
个人主页: 几分醉意的CSDN博客_传送门 上节我们介绍了什么是AOP、Aspectj框架的前置通知Before传送门,这篇文章将继续详解Aspectj框架的其它注解。 文章目录💖Aspectj框架介绍✨JoinPoint通知方法的参数✨后置通知AfterReturning✨环绕通知Ar…...

【java】Spring Boot --40 个 Spring Boot 常用注解(建议收藏)
本文目录一、Spring Web MVC 注解Spring Web MVC 注解RequestMappingRequestBodyGetMappingPostMappingPutMappingDeleteMappingPatchMappingControllerAdviceResponseBodyExceptionHandlerResponseStatusPathVariableRequestParamControllerRestControllerModelAttributeCross…...

《游戏学习》| 微信对话模拟生成器源码分析
简介微信对话生成器,是一款在线微信聊天对话制作的工具,它可以设置苹果或安卓状态栏,包括手机电量、手机时间等,还可以设置不同用户的角色,然后发送文字、语音、红包、转账等多种好玩的功能,可谓是一款娱乐…...

剑指 Offer 10- I. 斐波那契数列[c语言]
目录题目思路代码结果该文章只是用于记录考研复试刷题题目 力扣斐波那契数列 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下: F(0) 0, F(1) 1 …...
【C#基础】C# 数据类型总结
序号系列文章0【C#基础】初识编程语言C#1【C#基础】C# 程序通用结构2【C#基础】C# 基础语法解析文章目录前言数据类型一. 值类型(Value types)二. 引用类型(Reference types)三. 指针类型(Pointer types)结…...

再创荣誉 | Softing工业荣获CAIMRS 2023 数字化创新奖
在刚刚结束的中国工控-第二十一届“自动化及数字化”年度评选(CAIMRS 2023)中,Softing凭借edgeAggregator产品荣获“数字化创新奖”! 经层层筛选,Softing edgeAggregator边缘聚合服务器从中脱颖而出,摘得C…...

Multi Paxos
basic paxos 是用于确定且只能确定一个值,“只确定一个值有什么用?这可解决不了我面临的问题,例如每个用户都要多次保存数据.” 你心中可能有这样的疑问。 原simple paxos论文里有提到一连串个instance of paxos [4] 但没有提出 multi paxos的概念&…...

Android - dimen适配
一、分辨率对应DPIDPI名称范围值分辨率名称屏幕分辨率density密度(1dp显示多少px)ldpi120QVGA240*3200.75(120dpi/1600.75px)mdpi160(基线)HVGA320*4801(160dpi/1601px)hdpi240WVGA4…...

深度学习网络模型——RepVGG网络详解
深度学习网络模型——RepVGG网络详解0 前言1 RepVGG Block详解2 结构重参数化2.1 融合Conv2d和BN2.2 Conv2dBN融合实验(Pytorch)2.3 将1x1卷积转换成3x3卷积2.4 将BN转换成3x3卷积2.5 多分支融合2.6 结构重参数化实验(Pytorch)3 模型配置论文名称: RepVGG: Making V…...

仓库拣货标签应用案例
使用场景:富士康成都仓库 解决问题:仓库亮灯拣选, 提高作业效率和物料明晰展示仓库亮灯拣选使用场景:京东仓库 解决问题:播种墙分拣,合单拣货完成后按订单播种播种墙分拣使用场景:和尔泰智能料…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...

Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...