深度学习网络模型——RepVGG网络详解
深度学习网络模型——RepVGG网络详解
- 0 前言
- 1 RepVGG Block详解
- 2 结构重参数化
- 2.1 融合Conv2d和BN
- 2.2 Conv2d+BN融合实验(Pytorch)
- 2.3 将1x1卷积转换成3x3卷积
- 2.4 将BN转换成3x3卷积
- 2.5 多分支融合
- 2.6 结构重参数化实验(Pytorch)
- 3 模型配置
论文名称: RepVGG: Making VGG-style ConvNets Great Again
论文下载地址: https://arxiv.org/abs/2101.03697
官方源码(Pytorch实现): https://github.com/DingXiaoH/RepVGG
0 前言

1 RepVGG Block详解

2 结构重参数化

2.1 融合Conv2d和BN



2.2 Conv2d+BN融合实验(Pytorch)

from collections import OrderedDictimport numpy as np
import torch
import torch.nn as nndef main():torch.random.manual_seed(0)f1 = torch.randn(1, 2, 3, 3)module = nn.Sequential(OrderedDict(conv=nn.Conv2d(in_channels=2, out_channels=2, kernel_size=3, stride=1, padding=1, bias=False),bn=nn.BatchNorm2d(num_features=2)))module.eval()with torch.no_grad():output1 = module(f1)print(output1)# fuse conv + bnkernel = module.conv.weight running_mean = module.bn.running_meanrunning_var = module.bn.running_vargamma = module.bn.weightbeta = module.bn.biaseps = module.bn.epsstd = (running_var + eps).sqrt()t = (gamma / std).reshape(-1, 1, 1, 1) # [ch] -> [ch, 1, 1, 1]kernel = kernel * tbias = beta - running_mean * gamma / stdfused_conv = nn.Conv2d(in_channels=2, out_channels=2, kernel_size=3, stride=1, padding=1, bias=True)fused_conv.load_state_dict(OrderedDict(weight=kernel, bias=bias))with torch.no_grad():output2 = fused_conv(f1)print(output2)np.testing.assert_allclose(output1.numpy(), output2.numpy(), rtol=1e-03, atol=1e-05)print("convert module has been tested, and the result looks good!")if __name__ == '__main__':main()
终端输出结果:

2.3 将1x1卷积转换成3x3卷积

2.4 将BN转换成3x3卷积

代码截图如下所示:


2.5 多分支融合

代码截图:

图像演示:

2.6 结构重参数化实验(Pytorch)
import time
import torch.nn as nn
import numpy as np
import torchdef conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1):result = nn.Sequential()result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,kernel_size=kernel_size, stride=stride, padding=padding,groups=groups, bias=False))result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))return resultclass RepVGGBlock(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=3,stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False):super(RepVGGBlock, self).__init__()self.deploy = deployself.groups = groupsself.in_channels = in_channelsself.nonlinearity = nn.ReLU()if deploy:self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels,kernel_size=kernel_size, stride=stride,padding=padding, dilation=dilation, groups=groups,bias=True, padding_mode=padding_mode)else:self.rbr_identity = nn.BatchNorm2d(num_features=in_channels) \if out_channels == in_channels and stride == 1 else Noneself.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,stride=stride, padding=padding, groups=groups)self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1,stride=stride, padding=0, groups=groups)def forward(self, inputs):if hasattr(self, 'rbr_reparam'):return self.nonlinearity(self.rbr_reparam(inputs))if self.rbr_identity is None:id_out = 0else:id_out = self.rbr_identity(inputs)return self.nonlinearity(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)def get_equivalent_kernel_bias(self):kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasiddef _pad_1x1_to_3x3_tensor(self, kernel1x1):if kernel1x1 is None:return 0else:return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])def _fuse_bn_tensor(self, branch):if branch is None:return 0, 0if isinstance(branch, nn.Sequential):kernel = branch.conv.weightrunning_mean = branch.bn.running_meanrunning_var = branch.bn.running_vargamma = branch.bn.weightbeta = branch.bn.biaseps = branch.bn.epselse:assert isinstance(branch, nn.BatchNorm2d)if not hasattr(self, 'id_tensor'):input_dim = self.in_channels // self.groupskernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)for i in range(self.in_channels):kernel_value[i, i % input_dim, 1, 1] = 1self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)kernel = self.id_tensorrunning_mean = branch.running_meanrunning_var = branch.running_vargamma = branch.weightbeta = branch.biaseps = branch.epsstd = (running_var + eps).sqrt()t = (gamma / std).reshape(-1, 1, 1, 1)return kernel * t, beta - running_mean * gamma / stddef switch_to_deploy(self):if hasattr(self, 'rbr_reparam'):returnkernel, bias = self.get_equivalent_kernel_bias()self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.conv.in_channels,out_channels=self.rbr_dense.conv.out_channels,kernel_size=self.rbr_dense.conv.kernel_size, stride=self.rbr_dense.conv.stride,padding=self.rbr_dense.conv.padding, dilation=self.rbr_dense.conv.dilation,groups=self.rbr_dense.conv.groups, bias=True)self.rbr_reparam.weight.data = kernelself.rbr_reparam.bias.data = biasfor para in self.parameters():para.detach_()self.__delattr__('rbr_dense')self.__delattr__('rbr_1x1')if hasattr(self, 'rbr_identity'):self.__delattr__('rbr_identity')if hasattr(self, 'id_tensor'):self.__delattr__('id_tensor')self.deploy = Truedef main():f1 = torch.randn(1, 64, 64, 64)block = RepVGGBlock(in_channels=64, out_channels=64)block.eval()with torch.no_grad():output1 = block(f1)start_time = time.time()for _ in range(100):block(f1)print(f"consume time: {time.time() - start_time}")# re-parameterizationblock.switch_to_deploy()output2 = block(f1)start_time = time.time()for _ in range(100):block(f1)print(f"consume time: {time.time() - start_time}")np.testing.assert_allclose(output1.numpy(), output2.numpy(), rtol=1e-03, atol=1e-05)print("convert module has been tested, and the result looks good!")if __name__ == '__main__':main()
终端输出结果如下:

通过对比能够发现,结构重参数化后推理速度翻倍了,并且转换前后的输出保持一致。
3 模型配置

相关文章:
深度学习网络模型——RepVGG网络详解
深度学习网络模型——RepVGG网络详解0 前言1 RepVGG Block详解2 结构重参数化2.1 融合Conv2d和BN2.2 Conv2dBN融合实验(Pytorch)2.3 将1x1卷积转换成3x3卷积2.4 将BN转换成3x3卷积2.5 多分支融合2.6 结构重参数化实验(Pytorch)3 模型配置论文名称: RepVGG: Making V…...
仓库拣货标签应用案例
使用场景:富士康成都仓库 解决问题:仓库亮灯拣选, 提高作业效率和物料明晰展示仓库亮灯拣选使用场景:京东仓库 解决问题:播种墙分拣,合单拣货完成后按订单播种播种墙分拣使用场景:和尔泰智能料…...
介绍一款HCIA、HCIP、HCIE的刷题软件
华为认证考试分为三个等级,分别为工程师HCIA、高级工程师HCIP、专家HCIE,等级越高,考试难度越大。 本篇带大家详细了解华为数通题库刷题工具的详细操作步骤。 操作须知:本款刷题工具为一款刷题小程序,无需安装即可在线…...
线程池整理汇总
它山之石,可以攻玉。借鉴整理线程池相关文章,以及自身实践。 文章目录1. 线程池概述2. 线程池UML架构3. Executors创建线程的4种方法3.1 newSingleThreadExecutor3.2 newFixedThreadPool3.3 newCachedThreadPool3.4 newScheduledThreadPool小结4. 线程池…...
华为OD机试真题Python实现【最短木板长度】真题+解题思路+代码(20222023)
🔥系列专栏 华为OD机试(Python)真题目录汇总华为OD机试(JAVA)真题目录汇总华为OD机试(C++)真题目录汇总华为OD机试(JavaScript)真题目录汇总文章目录 🔥系列专栏题目输入输出示例一输入输出说明示例二输入输出说明...
VMware安装CentOS7
个人简介:云计算网络运维专业人员,了解运维知识,掌握TCP/IP协议,每天分享网络运维知识与技能。个人爱好: 编程,打篮球,计算机知识个人名言:海不辞水,故能成其大;山不辞石…...
力扣24.两两交换链表中的节点
文章目录力扣24.两两交换链表中的节点题目描述方法1:非递归方法2:递归力扣24.两两交换链表中的节点 题目描述 给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题&…...
AtCoder Regular Contest 137 题解(A~C)
A-Coprime Pair 思路 我们知道两个质数之间并不会相隔太远,于是我们直接用暴力就可以通过这题。 先从大到小枚举答案,并且枚举所有可能的起点,当枚举到的两个值满足条件输出并结束程序即可。 代码 #include <bits/stdc.h> using n…...
【C语言】预处理指令
C语言预处理指令一、什么是预处理指令二、预处理指令特点三、文件包含四、C标准库<stdio.h>一、什么是预处理指令 C语言的源文件(.c文件)需要经过编译生成可执行程序,编译操作会将源文件转换成目标文件,对于 VC、VS&#x…...
Java基础之多线程JUC全面学习笔记
目录初识多线程多线程的实现方式常见的成员方法线程安全的问题死锁生产者和消费者线程池自定义线程池初识多线程 什么是多线程? 线程 线程是操作系统能够进行运算调度的最小单位。线程被包含在进程之中,是进程中的实际运作单位。 简单理解:应用软件中互相独立&…...
13.CSS文本样式
文本样式 h1 {color: blue; }● 回顾上一节的内容,我们让h1标题的文字变成了蓝色,注意如果html中有多个h1标签,那我们这种写法所有的h1标签都会变成蓝色,除了颜色,本节我们将学习更多的CSS属性 文字大小font-size h…...
西恩科技更新招股书:IPO前大手笔分红“套现”, 赵志安为实控人
2月14日,上海西恩科技股份有限公司(下称“西恩科技”)更新了招股书(申报稿)。据贝多财经了解,西恩科技于2022年8月12日递交上市申请材料,准备在创业板上市,此次是西恩科技第二次更新…...
【CentOS】有关时间的设置
目录环境信息date语法信息查看时间设置时间设置日期tzselecttimedatectl语法显示当前及所有时区修改时区hwclock语法读取硬件时钟使用硬件时钟设置系统时间使用系统时间设置硬件时钟如何理解硬件时钟和系统时钟环境信息 CentOS 7 date 语法信息 date --help用法:…...
OpenCV制作Mask图像掩码
一、掩膜(mask) 在有些图像处理的函数中有的参数里面会有mask参数,即此函数支持掩膜操作,首先何为掩膜以及有什么用,如下: 数字图像处理中的掩膜的概念是借鉴于PCB制版的过程,在半导体制造中&am…...
C++STL剖析(九)—— unordered_map和unordered_multimap的概念和使用
文章目录1. unordered_map的介绍和使用🍑 unordered_map的构造🍑 unordered_map的使用🍅 insert🍅 operator[ ]🍅 find🍅 erase🍅 size🍅 empty🍅 clear🍅 sw…...
Android无菜单键,如何触发onCreateOptionsMenu(Menu menu)
文章目录小结问题及解决无法触发onCreateOptionsMenu(Menu menu)修改配置文件解决使用一个按钮来触发其它办法参考小结 现在的Android有三个键: 任务键,Home键,返回键,也就是没有菜单键了,那么如何如何触发onCreateOp…...
“黑洞”竟是外星人的量子计算机?
宇宙中的黑洞可以用作终极量子计算机,我们可以从中探索它们的特征。(图片来源:网络)我们完全有理由怀疑生命在我们的宇宙中很常见,但是为什么我们从未发现过其他生命存在的迹象?这个问题几乎自现代天文学诞…...
计算机网络入门
一,计算机网络在信息时代中的作用 21世纪的一些重要特征就是数字化,网络化和信息化,它是一个以网络为核心的信息时代。有三类大家很熟悉的网络,即电信网络,有线电视网络和计算机网络。按照最初的服务分工,…...
网络安全-内网DNS劫持-ettercap
网络安全-内网DNS劫持-ettercap 前言 一,我也是初学者记录的笔记 二,可能有错误的地方,请谨慎 三,欢迎各路大神指教 四,任何文章仅作为学习使用 五,学习网络安全知识请勿适用于违法行为 学习网络安全知识请…...
synchronized和Lock的区别
synchronized和lock的区别 synchronized和Lock,我已经通过源码级别的介绍过了,下面我们来总结下他们的区别 区别: 1.synchronized是关键字,Lock是接口,synchronized是JVM层实现,Lock是JDK中JUC包下的实现;…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...
Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)
名人说:莫道桑榆晚,为霞尚满天。——刘禹锡(刘梦得,诗豪) 原创笔记:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 上一篇:《数据结构第4章 数组和广义表》…...
