ccc-Tips for Deep Learning-李宏毅(8)
文章目录
- Recipe of Deep Learning
 - Good Results on Training Data
 - New activation function
 - Adaptive Learning Rate
 
- Good Results on Testing Data
 - Early Stopping
 - Regularization
 - Dropout
 
- why Dropout work?
 - Reason for bias&variance
 - Dropout is a kind of ensemble
 
Recipe of Deep Learning
Do not always blame overfitting
 对于DL模型而言,测试集效果不好不一定是overfitting,可能和训练方式和模型结构有关,下图就是一个56层神经网络在测试集和训练集效果都不如26层的例子:
 
Good Results on Training Data
New activation function

 当model使用sigmoid这个激活函数时会出现层数增加准确率反而减小的问题,问题来源是vanishing gradient problem(梯度消失)
 vanishing gradient problem
 
 图像中可以看到,输入的差值在经过sigmoid函数后会被缩小,这也导致model很深的时候,靠近input参数对于损失函数的影响很小(Backpropagation反向),而靠近output时梯度update确很快。所以导致训练结束时,前面的参数还是未收敛的random状态,形象解释如下:
 
 Rectified Linear Unit (ReLU)
 
 特点如下:
- 解决梯度消失问题
 - 相当于无数bias不同的sigmoid叠加
 - 计算快
 - 使网络变得thinner
 - 单个神经元是线性的,但整体网络还是非线性
 - 直接放弃输出为0的neural
 
操作示意图如下:
 
 ReLU - variant
 大同小异,为了让0的那部分更加合理,有东西可学
 
 Maxout
 就是对于同一组输出选最大的当作下一组输入,示意图如下:
 
 它相当于ReLU 的普遍状态,状态图(2 elements)如下:
 
Adaptive Learning Rate
这些优化算法在之前的文章有过更加详细全面的讲解
Good Results on Testing Data
Early Stopping

“testing set”效果最好时手动停止训练,这里的“testing set”指validation set模拟的testing set
Regularization
目的是让objective function平滑,通常去掉bias后效果更好
 L2 regularization
 
ηλ\eta \lambdaηλ这项是很小的正数,最后会使参数wnw^nwn接近0 ,L2 regularization可以让weight每次都变得更⼩⼀点(由于第二项的存在,不会为0)也称Weight Decay(权重衰减)
 L1 regularization
 
 也是让参数变小,不过是通过减去ηλsgn(wt)\eta \lambda sgn(w^t)ηλsgn(wt)来使得绝对值靠近0
 L1 V.s. L2
- 参数w的绝对值⽐较⼤的时候,L2下降得更快
 - L1 training 出来的model,参数会有很大的值
 
Dropout
在training时,每一个Neuron都有机率p完全失效,得到thinner 的network;
 
testing时将weight乘(1-p),不需要dropout。之所以乘(1-p)中和未失效结点与失效结点的关系
why Dropout work?
Reason for bias&variance
复杂的model,bias小而variance大。多个复杂的model结合计算平均,可能使variance减小
Dropout is a kind of ensemble
对于M个neurons,使用Dropout 方式就有2M2^M2M可能的network;对这样多的minibatch计算平均结果是非常困难的,但testing时将weight乘(1-p)可以很大程度上估计它,原理示意如下:
 
 形象解释如下:
 
相关文章:
ccc-Tips for Deep Learning-李宏毅(8)
文章目录Recipe of Deep LearningGood Results on Training DataNew activation functionAdaptive Learning RateGood Results on Testing DataEarly StoppingRegularizationDropoutwhy Dropout work?Reason for bias&varianceDropout is a kind of ensembleRec…...
ArkUI新能力,助力应用开发更便捷
ArkUI是一套构建分布式应用的声明式UI开发框架。它具备简洁自然的UI信息语法、丰富的UI组件、多维的状态管理,以及实时界面预览等相关能力,帮助您提升应用开发效率,并能在多种设备上实现生动而流畅的用户体验。随着HarmonyOS 3.1版本的发布&a…...
vue面试题大全
Vue面试题大全一.vue的基本原理二.双向数据绑定的原理三.使用object.defineProperty()来进行数据劫持有什么缺点?一.vue的基本原理 当一个vue实例创建的时候,vue会遍历data中的属性,用object.defineProperty,将它们转为getter/se…...
P1307 [NOIP2011 普及组] 数字反转
[NOIP2011 普及组] 数字反转 题目描述 给定一个整数 NNN,请将该数各个位上数字反转得到一个新数。新数也应满足整数的常见形式,即除非给定的原数为零,否则反转后得到的新数的最高位数字不应为零(参见样例 2)。 输入…...
【服务器数据恢复】NetApp存储无法访问的数据恢复案例
服务器数据恢复环境: NetApp某型号存储; 配备SAS硬盘,该硬盘520字节一个扇区; 所有的lun映射到小型机使用,存放Oracle数据库文件,采用ASM裸设备存储方式。 服务器故障: 管理员误操作删除NetApp…...
(考研湖科大教书匠计算机网络)第四章网络层-第三节2:分类编址的IPv4地址
获取pdf:密码7281专栏目录首页:【专栏必读】考研湖科大教书匠计算机网络笔记导航 文章目录一:分类IP地址概述二:各类地址详解(1)A类地址(2)B类地址(3)C类地址…...
Allegro移动器件时附带的孔和线被同步更改的原因和解决办法
Allegro移动器件时附带的孔和线被同步更改的原因和解决办法 用Allegro做PCB设计的时候,移动器件的时候,会出现附带的孔和线也会被同步更改,有时并不是期望的效果,如下图 Allegro其实将这个功能关闭即可,具体操作如下 选择Edit点击Move命令...
工程监测多通道振弦模拟信号采集仪VTN参数修改
工程监测多通道振弦模拟信号采集仪VTN参数修改 1 使用按键修改参数 使用按键修改某个参数的方法如下: (1)在系统参数查看页面(PXX 页面),按【SWITCH】或【SETTING】按键切换到要修改的参数项。 (…...
【算法】差分
作者:指针不指南吗 专栏:算法篇 🐾合理规划时间与精力🐾 1.什么是差分? 与前缀和是反函数 原数组a a1 , a2 , a3 , a4 , a5 , a6 , a7 构造数组b a1b1; a2b1b2; a3b1b2b3; … aib1b2b3…bi; 构造一个b数组使得&#…...
【LeetCode】剑指 Offer(1)
目录 写在前面: 题目1:剑指 Offer 03. 数组中重复的数字 - 力扣(Leetcode) 题目的接口: 解题思路: 代码: 过啦!!! 题目2:剑指 Offer 06. 从…...
linux rancher 清理docker容器磁盘空间
目录说明 /var/lib/docker/containers: 是 Docker 在 Linux 系统上默认存储容器信息的目录。在该目录下,每个运行的 Docker 容器都有一个单独的目录,以容器 ID 命名,其中包含有关该容器的元数据和日志文件。 具体来说࿰…...
移动端兼容性问题集锦
前言 去年主要工作就是混合开发,写app内嵌的h5。在开发期间多多少少遇到些兼容性问题,最近工作比较清闲,整理下方便以后查阅,也希望能帮助到一些同学。 并且本文会持续补充内容,欢迎关注我,另外我会更新一…...
【Spark分布式内存计算框架——Spark SQL】4. DataFrame(上)
3.1 DataFrame是什么 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。 使…...
GPS通信
目录 一、GPS启动的方式 二、GPS经纬度坐标转换 三、GPS定位和网络定位 四、3D定位和2D 定位 五、同步GPS时间到本地时间 六、卫星分布对GPS performance有很大影响吗 一、GPS启动的方式 热启动:指在上次关机的地方没有过多移动过,且距离上次定位…...
Java高频面试题,ReentrantLock 是如何实现锁公平和非公平性的?
我先解释一下个公平和非公平的概念。 公平,指的是竞争锁资源的线程,严格按照请求顺序来分配锁。 非公平,表示竞争锁资源的线程,允许插队来抢占锁资源。 ReentrantLock 默认采用了非公平锁的策略来实现锁的竞争逻辑。 其次&…...
「JVM 原理使用」 实际开发中的应用
Class 文件格式、执行引擎主要以 Class 文件描述了存储格式、类何时加载、如何连接、VM 如何执行字节码指令,这些动作基本都是 JVM 直接控制,用户代码无法干预和改变; 用户可以干预的只有字节码生成、类加载器两部分,而这两部分的…...
最最普通程序员,如何利用工资攒够彩礼,成为人生赢家
今天我们不讲如何提升你的专业技能去涨工资,不讲面试技巧如何跳槽涨工资,不讲如何干兼职赚人生第一桶金,就讲一个最最普通的程序员,如何在工作几年后,可以攒够彩礼钱,婚礼酒席钱,在自己人生大事…...
脏话越多,代码越好!
你在读开源代码的时候有没有遇到过这种注释?What the fuck ?Dude,WTFFuck this !我遇到过,每次都忍不住笑,心想老外可真是性情中人,遇到不爽的地方就开骂,还直接写到注释中,甚至代码中。Bob大叔…...
【Node.js】模块化
模块化模块化的基本概念模块化规范Node.js中模块化分类模块作用域向外共享模块作用域的成员Node.js中的模块化规范模块化的基本概念 指解决一个复杂问题时,自顶向下逐层把系统划分成若干模块的过程对于整个系统来说,模块是可组合,分解和更换…...
训练一个中文gpt2模型
前言 这是我的github上的一个介绍,关于如何训练中文版本的gpt2的。链接为: https://github.com/yuanzhoulvpi2017/zero_nlp 介绍 本文,将介绍如何使用中文语料,训练一个gpt2可以使用你自己的数据训练,用来:写新闻、…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
32单片机——基本定时器
STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...
SQL进阶之旅 Day 22:批处理与游标优化
【SQL进阶之旅 Day 22】批处理与游标优化 文章简述(300字左右) 在数据库开发中,面对大量数据的处理任务时,单条SQL语句往往无法满足性能需求。本篇文章聚焦“批处理与游标优化”,深入探讨如何通过批量操作和游标技术提…...
node 进程管理工具 pm2 的详细说明 —— 一步一步配置 Ubuntu Server 的 NodeJS 服务器详细实录 7
前言 我以 Ubuntu Server 打造的 NodeJS 服务器为主题的系列文章,经过五篇博客,我们顺利的 安装了 ubuntu server 服务器,并且配置好了 ssh 免密登录服务器,安装好了 服务器常用软件安装, 配置好了 zsh 和 vim 以及 通过 NVM 安装…...
