关于tensorboard --logdir=logs的报错解决办法记录
我在运行tensorboard --logdir=logs时,产生了如下的报错,找遍全网后,解决办法如下
 
 先卸载
pip uninstall tensorboard
再安装
pip install tensorboard
最后出现如下报错
Traceback (most recent call last):
File “d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorboard\compat_init_.py”, line 42, in tf
from tensorboard.compat import notf # noqa: F401
ImportError: cannot import name ‘notf’ from ‘tensorboard.compat’ (d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorboard\compat_init_.py)
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File “d:\newanaconda\envs\imooc_aiai\lib\runpy.py”, line 194, in run_module_as_main
return run_code(code, main_globals, None,
File “d:\newanaconda\envs\imooc_aiai\lib\runpy.py”, line 87, in run_code
exec(code, run_globals)
File "D:\newanaconda\envs\imooc_aiai\Scripts\tensorboard.exe_main.py", line 7, in
File “d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorboard\main.py”, line 39, in run_main
main_lib.global_init()
File “d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorboard\main_lib.py”, line 40, in global_init
if getattr(tf, “version”, “stub”) == “stub”:
File “d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorboard\lazy.py”, line 65, in getattr
return getattr(load_once(self), attr_name)
File “d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorboard\lazy.py”, line 97, in wrapper
cache[arg] = f(arg)
File “d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorboard\lazy.py”, line 50, in load_once
module = load_fn()
File "d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorboard\compat_init.py", line 45, in tf
import tensorflow
File "d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorflow_init.py", line 41, in
from tensorflow.python.tools import module_util as module_util
File "d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorflow\python_init.py", line 40, in
from tensorflow.python.eager import context
File “d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorflow\python\eager\context.py”, line 32, in
from tensorflow.core.framework import function_pb2
File “d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorflow\core\framework\function_pb2.py”, line 16, in
from tensorflow.core.framework import attr_value_pb2 as tensorflow_dot_core_dot_framework_dot_attr__value__pb2
File “d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorflow\core\framework\attr_value_pb2.py”, line 16, in
from tensorflow.core.framework import tensor_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__pb2
File “d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorflow\core\framework\tensor_pb2.py”, line 16, in
from tensorflow.core.framework import resource_handle_pb2 as tensorflow_dot_core_dot_framework_dot_resource__handle__pb2
File “d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorflow\core\framework\resource_handle_pb2.py”, line 16, in
from tensorflow.core.framework import tensor_shape_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__shape__pb2
File “d:\newanaconda\envs\imooc_aiai\lib\site-packages\tensorflow\core\framework\tensor_shape_pb2.py”, line 36, in
_descriptor.FieldDescriptor(
File “d:\newanaconda\envs\imooc_aiai\lib\site-packages\google\protobuf\descriptor.py”, line 560, in new
_message.Message._CheckCalledFromGeneratedFile()
TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
- Downgrade the protobuf package to 3.20.x or lower.
- Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).
解决办法
 pip install protobuf==3.19.0 -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn

 最后成功
 
相关文章:
 
关于tensorboard --logdir=logs的报错解决办法记录
我在运行tensorboard --logdirlogs时,产生了如下的报错,找遍全网后,解决办法如下 先卸载 pip uninstall tensorboard再安装 pip install tensorboard最后出现如下报错 Traceback (most recent call last): File “d:\newanaconda\envs\imo…...
em,rem,px,rpx,vw,vh的区别与使用
在css中单位长度用的最多的是px、em、rem,这三个的区别是:一、px是固定的像素,一旦设置了就无法因为适应页面大小而改变。二、em和rem相对于px更具有灵活性,他们是相对长度单位,意思是长度不是定死了的,更适…...
 
Vue+node.js医院预约挂号信息管理系统vscode
网上预约挂号系统将会是今后医院发展的主要趋势。 前端技术:nodejsvueelementui,视图层其实质就是vue页面,通过编写vue页面从而展示在浏览器中,编写完成的vue页面要能够和控制器类进行交互,从而使得用户在点击网页进行操作时能够正…...
 
Java真的不难(五十四)RabbitMQ的入门及使用
RabbitMQ的入门及使用 一、什么是RabbitMQ? MQ全称为Message Queue,即消息队列。消息队列是在消息的传输过程中保存消息的容器。它是典型的:生产者、消费者模型。生产者不断向消息队列中生产消息,消费者不断的从队列中获取消息。…...
 
Unity | Script Hot Reload
官网地址:https://hotreload.net/ 一、作用 Unity在运行时,可以直接修改代码,避免等待过长的编译时间。 二、说明 1、支持的平台? Windows、MacOS、Linux 2、支持的Unity版本? 2018.4 (LTS)2019.4 (LTS)2020.3 (L…...
 
3|射频识别技术|第五讲:数据通信和编码技术|第九章:编码与调制|重点理解掌握传输介质中的有线传输介质
计算机网络部分:https://blog.csdn.net/m0_57656758/article/details/128943949传输介质分为有线传输介质和无线传输介质两大类;有线传输介质通常包含双绞线、同轴电缆和光导纤维;无线传输介质包含微波、红外线等。传输介质的选择和连接是网络…...
 
【遇见青山】基于Redis的Feed流实现案例
【遇见青山】基于Redis的Feed流实现案例1.关注推送2.具体代码实现1.关注推送 关注推送也叫做Feed流,直译为投喂。为用户持续的提供"沉浸式”的体验,通过无限下拉刷新获取新的信息。 Feed流产品有两种常见模式: 这里我们实现基本的TimeL…...
【芯片前端】一文搞定|寄存器组织生成与uvm ral_model环境全流程
前言 本文以组织一个系统(或模块)寄存器为例,进行寄存器与ral生成相关的全流程展示。内容包括如下几个部分: 寄存器文档组织 描述文件与辅助RTL代码结构 ralf/ral/rtl文件代码结构 UVM RAL访问环境组织 寄存器文档组织 在windows路径下组织寄存器文档,格式为excel表格。…...
 
Leetcode力扣秋招刷题路-0061
从0开始的秋招刷题路,记录下所刷每道题的题解,帮助自己回顾总结 61. 旋转链表 给你一个链表的头节点 head ,旋转链表,将链表每个节点向右移动 k 个位置。 示例 1: 输入:head [1,2,3,4,5], k 2 输出&…...
 
xilinx srio ip学习笔记之axistream接口
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 xilinx srio ip学习笔记之axistream接口前言接口转化前言 srio 的IQ接口都是基于axistream的,以前没怎么用过axistream的接口,或者说没怎么用过复杂条…...
 
轨迹误差评估指标[APE/RPE]和EVO
轨迹误差评估指标[APE/RPE]和EVO1. ATE/APE2. RPE3. EVO3.1 评估指标3.2 使用3.2.1 轨迹可视化3.2.2 APE3.2.3 RPEReference: 高翔,张涛 《视觉SLAM十四讲》视觉SLAM基础:算法精度评价指标(ATE、RPE) 在实际工程中,我…...
 
uni-app 消息推送功能UniPush
uni-app 消息推送功能UniPush,这里用的是uni-app自带的UniPush1.0(个推服务),所以只针对UniPush1.0介绍实现步骤。 建议查阅的文章: UniPush 1.0 使用指南[2] Unipush 常见问题[3] 当然现在已经出了UniPush2.0(HBuilde…...
面试题(二十六)场景应用
1. 场景应用 1.1 微信红包相关问题 参考答案 概况:2014年微信红包使用数据库硬抗整个流量,2015年使用cache抗流量。 微信的金额什么时候算? 微信红包的金额是拆的时候实时算出来,不是预先分配的,采用的是纯内存计…...
 
密码技术在车联网安全中的应用与挑战
随着智慧交通和无人驾驶的快速发展,车联网产业呈现蓬勃发展态势,车与云、车与车、车与路、车与人等综合网络链接的融合程度越来越高,随之而来的安全挑战也更加严峻。解决车联网的安全问题需要一个整体的防护体系,而密码技术凭借技…...
 
富媒体数据管理解决方案:简化、优化、自动化
富媒体数据管理解决方案:简化、优化、自动化 适用于富媒体的 NetApp 解决方案有助于简化和降低数据管理成本,优化全球媒体工作流并自动执行媒体资产管理。这将有助于减轻您的负担。 为什么选择 NetApp 的富媒体数据管理解决方案? 成本更低…...
 
QT入门Input Widgets之QFontComboBox、QTextEdit、QPlainTextEdit、QDial、QKeySequenceEdit
目录 一、QFontComboBox的相关介绍 1、实际使用 二、QTextEdit与QPlainTextEdit 三、QDial的相关介绍 四、QKeySequenceEdit的相关介绍 此文为作者原创,创作不易,转载请标明出处! 一、QFontComboBox的相关介绍 1、实际使用 一般使用较…...
 
Java企业级开发学习笔记
文章目录一、Spring1.1、Slay Dragon1.2、RescueDamselQuest一、Spring 第一周写了两个小项目均使用了原始调用和容器的方法 两个项目:<斩杀大龙与上路保卫战> 配一张文件位置图 1.1、Slay Dragon BraveKnight package net.sherry.spring.day01;public c…...
【算法基础】(一)基础算法 ---高精度
✨个人主页:bit me ✨当前专栏:算法基础 🔥专栏简介:该专栏主要更新一些基础算法题,有参加蓝桥杯等算法题竞赛或者正在刷题的铁汁们可以关注一下,互相监督打卡学习 🌹 🌹 dz…...
 
电源口防雷器电路设计方案
电源口防雷电路的设计需要注意的因素较多,有如下几方面:1、防雷电路的设计应满足规定的防护等级要求,且防雷电路的残压水平应能够保护后级电路免受损坏。2、在遇到雷电暂态过电压作用时,保护装置应具有足够快的动作响应速度&#…...
 
【零基础入门前端系列】—表单(七)
【零基础入门前端系列】—表单(七) 一、什么是表单 表单在Web网页中用来给访问者填写信息,从而采集客户信息端,使得网页具有交互功能。一般是将表单设计在一个HTML文档中,当用户填写完信息后做提交操作,于…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
 
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
 
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
 
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
 
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
 
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...
 
AxureRP-Pro-Beta-Setup_114413.exe (6.0.0.2887)
Name:3ddown Serial:FiCGEezgdGoYILo8U/2MFyCWj0jZoJc/sziRRj2/ENvtEq7w1RH97k5MWctqVHA 注册用户名:Axure 序列号:8t3Yk/zu4cX601/seX6wBZgYRVj/lkC2PICCdO4sFKCCLx8mcCnccoylVb40lP...
