当前位置: 首页 > news >正文

基于MATLAB的MIMO信道估计(附完整代码与分析)

目录

一. 介绍

二. MATLAB代码

三. 运行结果与分析


一. 介绍

本篇将在MATLAB的仿真环境中对比MIMO几种常见的信道估计方法的性能。

有关MIMO的介绍可看转至此篇博客:

MIMO系统模型构建_唠嗑!的博客-CSDN博客

在所有无线通信中,信号通过信道会出现失真,或者会添加各种噪声。正确解码接收到的信号就需要消除信道施加的失真和噪声。为了弄清信道的特性,就需要信道估计。

信道估计有很多不同的方法,但是通用的流程可概括如下:

  1. 设置一个数学模型,利用信道矩阵搭建起发射信号和接收信号之间的关系;
  2. 发射已知信号(通常称为参考信号或导频信号)并检测接收到的信号;
  3. 通过对比发送信号和接收信号,确定信道矩阵中的每个元素。

二. MATLAB代码

一共有四个代码,包含三个函数代码和一个主运行代码。

主运行代码用来产生最后的图像

(1)main.m文件代码

%由于信道数据随机产生,每次运行出的图像可能有略微差异%初始化
close all;
clear all;%%设定仿真参数rng('shuffle'); %产生随机化种子,也可以使用另一函数randn('state',sum(100*clock));%设定蒙特卡洛仿真的数目
nbrOfMonteCarloRealizations = 1000;nbrOfCouplingMatrices = 50; %相关矩阵数目Nt = 8; %发射天线的数量,训练序列的长度
Nr = 4; %接收天线的数量%训练的总功率
totalTrainingPower_dB = 0:1:20; %单位为dB
totalTrainingPower = 10.^(totalTrainingPower_dB/10); %转为线性范围%最优化算法
option = optimset('Display','off','TolFun',1e-7,'TolCon',1e-7,'Algorithm','interior-point');%比较不同的信道估计算法 
%实用蒙特卡洛仿真法
average_MSE_MMSE_estimator_optimal = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %最优训练下的MMSE估计法
average_MSE_MMSE_estimator_heuristic = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %启发训练下的MMSE估计法
average_MSE_MVU_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %最优训练下的MVU估计法
average_MSE_onesided_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %单边线性估计法 
average_MSE_twosided_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %双边线性估计法%随机信道统计量下的迭代
for statisticsIndex = 1:nbrOfCouplingMatrices%产生Weichselberger模型下的耦合矩阵V%元素均来自卡方分布(自由度为2)V = abs(randn(Nr,Nt)+1i*randn(Nr,Nt)).^2;V = Nt*Nr*V/sum(V(:)); %将矩阵Frobenius范数设为 Nt x Nr.%计算耦合矩阵的协方差矩阵R = diag(V(:));R_T = diag(sum(V,1)); %在Weichselberger模型下,计算发射端的协方差矩阵R_R = diag(sum(V,2)); %在Weichselberger模型下,计算接收端的协方差矩阵%使用MATLAB内置自带的优化算法,计算MMSE估计法下最优的训练功率分配trainingpower_MMSE_optimal = zeros(Nt,length(totalTrainingPower)); %每个训练序列的功率分配向量for k = 1:length(totalTrainingPower) %遍历每个训练序列的功率分配trainingpower_initial = totalTrainingPower(k)*ones(Nt,1)/Nt; %初始设定功率均相等%使用fmincon函数来最优化功率分配%最小化MSE,所有功率均非负trainingpower_MMSE_optimal(:,k) = fmincon(@(q) functionMSEmatrix(R,q,Nr),trainingpower_initial,ones(1,Nt),totalTrainingPower(k),[],[],zeros(Nt,1),totalTrainingPower(k)*ones(Nt,1),[],option);end%计算功率分配[eigenvalues_sorted,permutationorder] = sort(diag(R_T),'descend'); %计算和整理特征值[~,inversePermutation] = sort(permutationorder); %记录特征值的orderq_MMSE_heuristic = zeros(Nt,length(totalTrainingPower));for k = 1:length(totalTrainingPower) %遍历每个训练功率alpha_candidates = (totalTrainingPower(k)+cumsum(1./eigenvalues_sorted(1:Nt,1)))./(1:Nt)'; %计算拉格朗日乘子的不同值optimalIndex = find(alpha_candidates-1./eigenvalues_sorted(1:Nt,1)>0 & alpha_candidates-[1./eigenvalues_sorted(2:end,1); Inf]<0); %找到拉格朗日乘子的αq_MMSE_heuristic(:,k) = max([alpha_candidates(optimalIndex)-1./eigenvalues_sorted(1:Nt,1) zeros(Nt,1)],[],2); %使用最优的α计算功率分配endq_MMSE_heuristic = q_MMSE_heuristic(inversePermutation,:); %通过重新整理特征值来确定最终的功率分配%计算均匀功率分配q_uniform = (ones(Nt,1)/Nt)*totalTrainingPower;%蒙特卡洛仿真初始化vecH_realizations = sqrtm(R)*( randn(Nt*Nr,nbrOfMonteCarloRealizations)+1i*randn(Nt*Nr,nbrOfMonteCarloRealizations) ) / sqrt(2); %以向量的形式产生信道 vecN_realizations = ( randn(Nt*Nr,nbrOfMonteCarloRealizations)+1i*randn(Nt*Nr,nbrOfMonteCarloRealizations) ) / sqrt(2); %以向量的形式产生噪声%对于每种估计方法计算MSE和训练功率for k = 1:length(totalTrainingPower)%MMSE估计法:最优训练功率分配P_tilde = kron(diag(sqrt(trainingpower_MMSE_optimal(:,k))),eye(Nr)); %计算有效功率矩阵average_MSE_MMSE_estimator_optimal(k,statisticsIndex,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R); %计算MSEH_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations+vecN_realizations); %使用蒙特卡洛仿真来计算该估计average_MSE_MMSE_estimator_optimal(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE%MMSE估计法:启发式训练功率分配MMSE P_tilde = kron(diag(sqrt(q_MMSE_heuristic(:,k))),eye(Nr));  %计算有效训练矩阵average_MSE_MMSE_estimator_heuristic(k,statisticsIndex,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R); %计算MSEH_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计average_MSE_MMSE_estimator_heuristic(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE%MVY估计法: 最优均匀训练功率分配P_training = diag(sqrt(q_uniform(:,k))); %均匀功率分配P_tilde = kron(transpose(P_training),eye(Nr));  %计算有效训练矩阵P_tilde_pseudoInverse = kron((P_training'/(P_training*P_training'))',eye(Nr)); %计算有效训练矩阵的伪逆average_MSE_MVU_estimator(k,statisticsIndex,1) = Nt^2*Nr/totalTrainingPower(k); %计算MSEH_hat = P_tilde_pseudoInverse'*(P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计average_MSE_MVU_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE%One-sided linear 估计法: 最优训练功率分配又被称为 "LMMSE 估计法" P_training = diag(sqrt(q_MMSE_heuristic(:,k))); %使用最优功率分配来计算训练矩阵 P_tilde = kron(P_training,eye(Nr)); %计算有效训练矩阵average_MSE_onesided_estimator(k,statisticsIndex,1) = trace(inv(inv(R_T)+P_training*P_training'/Nr)); %计算MSEAo = (P_training'*R_T*P_training + Nr*eye(Nt))\P_training'*R_T; %计算one-sided linear估计法中的矩阵A0 H_hat = kron(transpose(Ao),eye(Nr))*(P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计average_MSE_onesided_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) );  %使用蒙特卡洛仿真来计算MS%Two-sided linear 估计法: 最优训练功率分配P_training = diag(sqrt(q_uniform(:,k))); %计算训练矩阵,均匀功率分配P_tilde = kron(P_training,eye(Nr)); %计算有效训练矩阵R_calE = sum(1./q_uniform(:,k))*eye(Nr); %计算协方差矩阵average_MSE_twosided_estimator(k,statisticsIndex,1) = trace(R_R-(R_R/(R_R+R_calE))*R_R); %计算MSEC1 = inv(P_training); %计算矩阵C1C2bar = R_R/(R_R+R_calE); %计算C2bar矩阵H_hat = kron(transpose(C1),C2bar)*(P_tilde*vecH_realizations + vecN_realizations);average_MSE_twosided_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSendend%挑选训练功率的子集
subset = linspace(1,length(totalTrainingPower_dB),5);normalizationFactor = Nt*Nr; %设定MSE标准化因子为trace(R), 标准化MSE为从0到1.%使用理论MSE公式画图
figure(1); hold on; box on;plot(totalTrainingPower_dB,mean(average_MSE_MVU_estimator(:,:,1),2)/normalizationFactor,'b:','LineWidth',2);plot(totalTrainingPower_dB,mean(average_MSE_twosided_estimator(:,:,1),2)/normalizationFactor,'k-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_onesided_estimator(:,:,1),2)/normalizationFactor,'r-','LineWidth',1);plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_heuristic(subset(1),:,1),2)/normalizationFactor,'b+-.','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_optimal(subset(1),:,1),2)/normalizationFactor,'ko-','LineWidth',1);legend('MVU, optimal','Two-sided linear, optimal','One-sided linear, optimal','MMSE, heuristic','MMSE, optimal','Location','SouthWest')plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_heuristic(:,:,1),2)/normalizationFactor,'b-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_optimal(:,:,1),2)/normalizationFactor,'k-','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_heuristic(subset,:,1),2)/normalizationFactor,'b+','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_optimal(subset,:,1),2)/normalizationFactor,'ko','LineWidth',1);set(gca,'YScale','Log'); %纵轴为log范围
xlabel('Total Training Power (dB)');
ylabel('Average Normalized MSE');
axis([0 totalTrainingPower_dB(end) 0.05 1]);title('Results based on theoretical formulas');%使用蒙特卡洛仿真画理论运算图
figure(2); hold on; box on;plot(totalTrainingPower_dB,mean(average_MSE_MVU_estimator(:,:,2),2)/normalizationFactor,'b:','LineWidth',2);
plot(totalTrainingPower_dB,mean(average_MSE_twosided_estimator(:,:,2),2)/normalizationFactor,'k-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_onesided_estimator(:,:,2),2)/normalizationFactor,'r-','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_heuristic(subset(1),:,2),2)/normalizationFactor,'b+-.','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_optimal(subset(1),:,2),2)/normalizationFactor,'ko-','LineWidth',1);legend('MVU, optimal','Two-sided linear, optimal','One-sided linear, optimal','MMSE, heuristic','MMSE, optimal','Location','SouthWest')plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_heuristic(:,:,2),2)/normalizationFactor,'b-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_optimal(:,:,2),2)/normalizationFactor,'k-','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_heuristic(subset,:,2),2)/normalizationFactor,'b+','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_optimal(subset,:,2),2)/normalizationFactor,'ko','LineWidth',1);set(gca,'YScale','Log'); %纵轴为log范围
xlabel('Total Training Power (dB)');
ylabel('Average Normalized MSE');
axis([0 totalTrainingPower_dB(end) 0.05 1]);title('Results based on Monte-Carlo simulations');

包含每行具体代码的解释

(2)三个函数文件

function [deviation,powerAllocation]=functionLagrangeMultiplier(eigenvaluesTransmitter,totalPower,k,alpha)
%Compute the MSE for estimation of the squared Frobenius norm of the
%channel matrix for a given training power allocation. 
%INPUT:
%eigenvaluesTransmitter = Vector with the active eigenvalues at the
%                         transmitter side
%totalPower             = Total power of the training sequence
%k                      = Vector with k parameter values 
%alpha                  = Langrange multiplier value
%
%OUTPUT:
%deviation              = Difference between available power and used power
%powerAllocation        = Training power allocation 
%Compute power allocation 
powerAllocation = sqrt(8*(1./alpha(:))*eigenvaluesTransmitter'/3).*cos(repmat((-1).^k*pi/3,[length(alpha) 1])-atan(sqrt(8*(1./alpha(:))*(eigenvaluesTransmitter.^3)'/27-1))/3)-repmat(1./eigenvaluesTransmitter',[length(alpha) 1]);%Deviation between total available power and the power that is used
deviation = abs(totalPower-sum(powerAllocation,2));
function MSE = functionMSEmatrix(R_diag,q_powerallocation,B)
%Compute the MSE for estimation of the channel matrix for a given training
%power allocation. 
%INPUT:
%R_diag            = Nt Nr x Nt Nr diagonal covariance matrix
%q_powerallocation = Nt x 1 vector with training power allocation
%B                 = Length of the training sequence.
%
%OUTPUT:
%MSE               = Mean Squared Error for estimation of the channel matrixP_tilde = kron(diag(sqrt(q_powerallocation)),eye(B));MSE = trace(R_diag - R_diag*(P_tilde'/(P_tilde*R_diag*P_tilde'+eye(length(R_diag))))*P_tilde*R_diag);
function MSE = functionMSEnorm(eigenvaluesTransmitter,eigenvaluesReceiver,powerAllocation)
%Compute the MSE for estimation of the squared Frobenius norm of the
%channel matrix for a given training power allocation. 
%INPUT:
%eigenvaluesTransmitter = Nt x 1 vector with eigenvalues at the
%                         transmitter side
%eigenvaluesReceiver    = Nr x 1 vector with eigenvalues at the
%                         receiver side
%powerAllocation        = Nt x 1 vector with training power allocation
%
%OUTPUT:
%MSE               = Mean Squared Error for estimation of the squared normMSE = sum(sum(((eigenvaluesTransmitter*eigenvaluesReceiver').^2 + 2*(powerAllocation.*eigenvaluesTransmitter.^3)*(eigenvaluesReceiver').^3)./(1+(powerAllocation.*eigenvaluesTransmitter)*eigenvaluesReceiver').^2));

注意:

  • 此MIMO发射天线为8,接收天线为4;
  • 三个函数文件的命名需要与函数保持一致;
  • 先运行函数文件,再运行main主文件;
  • 函数文件出现变量数报错是正常现象;
  • 运行出来有两个图,选择任意一个图即可。

三. 运行结果与分析

分析:

  1. 横向看,当训练功率增加时,均方误差(MSE)在减小,符合信道估计的基本逻辑;
  2. 纵向对比,MMSE(optimal)》MMSE(heuristic)》one-sided linear》two-side linear>MVU

》代表左边优于右边,每一个位置代表一种信道估计方法

相关文章:

基于MATLAB的MIMO信道估计(附完整代码与分析)

目录 一. 介绍 二. MATLAB代码 三. 运行结果与分析 一. 介绍 本篇将在MATLAB的仿真环境中对比MIMO几种常见的信道估计方法的性能。 有关MIMO的介绍可看转至此篇博客&#xff1a; MIMO系统模型构建_唠嗑&#xff01;的博客-CSDN博客 在所有无线通信中&#xff0c;信号通过…...

Python代码游戏————星球大战

♥️作者:小刘在C站 ♥️个人主页:小刘主页 ♥️每天分享云计算网络运维课堂笔记,努力不一定有收获,但一定会有收获加油!一起努力,共赴美好人生! ♥️夕阳下,是最美的绽放,树高千尺,落叶归根人生不易,人间真情 目录 一.Python介绍 二.游戏效果呈现 三.主代码 四....

java向Word模板中替换书签数据,插入图片,插入复选框,插入Word中表格的行数据,删除表格行数据

java向Word模板中替换书签数据&#xff0c;插入图片&#xff0c;插入复选框&#xff0c;插入Word中表格的行数据&#xff0c;删除表格行数据 使用插件&#xff1a;spire.doc 创建工具类&#xff0c;上代码&#xff1a; import com.spire.doc.Document; import com.spire.doc.…...

Java基础知识快速盘点(二)

一&#xff0c;类型转换 隐式转换 将一个类型转换为另一个类型时&#xff0c;系统默认转换常量优化机制算术运算时类型的隐式转换&#xff08;byte&#xff0c;short在算术运算时都会转换为int&#xff09;char类型在进行运算时会根据其编码值进行运算 显式转换 二&#xff0…...

企业降本增效的催化剂:敏捷迭代

伴随着开源技术的大爆发&#xff0c;新一代的软件技术如雨后春笋般层出不穷。每家企业在硬件及软件开发上都有许多开源技术可选&#xff0c;目的还是在于提高效率&#xff0c;降低开发成本。 本篇文章&#xff0c;带大家了解下促进企业降本增效的重要理念&#xff1a;敏捷迭代…...

MySQL入门篇-MySQL高级窗口函数简介

备注:测试数据库版本为MySQL 8.0 这个blog我们来聊聊MySQL高级窗口函数 窗口函数在复杂查询以及数据仓库中应用得比较频繁 与sql打交道比较多的技术人员都需要掌握 如需要scott用户下建表及录入数据语句&#xff0c;可参考:scott建表及录入数据sql脚本 分析函数有3个基本组成…...

什么是 API(应用程序接口)?

API&#xff08;应用程序接口&#xff09;是一种软件中介&#xff0c;它允许两个不相关的应用程序相互通信。它就像一座桥梁&#xff0c;从一个程序接收请求或消息&#xff0c;然后将其传递给另一个程序&#xff0c;翻译消息并根据 API 的程序设计执行协议。API 几乎存在于我们…...

如何在外网访问内网的 Nginx 服务?

计算机业内人士对Nginx 并不陌生&#xff0c;它是一款轻量级的 Web 服务器/反向代理服务器及电子邮件&#xff08;IMAP/POP3&#xff09;代理服务器&#xff0c;除了nginx外&#xff0c;类似的apache、tomcat、IIS这几种都是主流的中间件。 Nginx 是在 BSD-like 协议下发行的&…...

vue2中defineProperty和vue3中proxy区别

区别一&#xff1a;defineProperty 是对属性劫持&#xff0c;proxy 是对代理对象 下面我们针对一个对象使用不同的方式进行监听&#xff0c;看写法上有什么不同。 // 原始对象 const data {name: Jane,age: 21 }defineProperty defineProperty 只能劫持对象的某一个属性&…...

将bean注入Spring容器的五种方式

前言 我们在项目开发中都用到Spring&#xff0c;知道对象是交由Spring去管理。那么将一个对象加入到Spring容器中&#xff0c;有几种方法呢&#xff0c;我们来总结一下。 ComponentScan Component ComponentScan可以放在启动类上&#xff0c;指定要扫描的包路径&#xff1b;…...

C生万物 | 常量指针和指针常量的感性理解

文章目录&#x1f4da;引言✒常量指针&#x1f50d;介绍与分析&#x1f4f0;小结与记忆口诀✒指针常量&#x1f50d;介绍与分析&#x1f4f0;小结与记忆口诀&#x1f449;一份凉皮所引发的故事&#x1f448;总结与提炼&#x1f4da;引言 本文我们来说说大家很困惑的两个东西&am…...

python 打包工具 pyinstaller和Nuitka区别

1.1 使用需求 这次也是由于项目需要&#xff0c;要将python的代码转成exe的程序&#xff0c;在找了许久后&#xff0c;发现了2个都能对python项目打包的工具——pyintaller和nuitka。 这2个工具同时都能满足项目的需要&#xff1a; 隐藏源码。这里的pyinstaller是通过设置key来…...

Python解题 - CSDN周赛第28期

上一期周赛问哥因为在路上&#xff0c;无法参加&#xff0c;但还是抽空登上来看了一下题目。4道题都挺简单的&#xff0c;有点遗憾未能参加。不过即使参加了&#xff0c;手速也未必能挤进前十。 本期也是一样&#xff0c;感觉新增的题目都偏数学类&#xff0c;基本用不到所谓的…...

DNS记录类型有哪些,分别代表什么含义?

DNS解析将域名指向IP地址&#xff0c;是互联网中的一项重要服务。而由于业务场景不同&#xff0c;在设置DNS解析时&#xff0c;需要选择不同的记录类型。网站管理人员需要准确了解每一种DNS记录类型所代表的含义和用途&#xff0c;才能满足不同场景的解析需求。本文中科三方简单…...

ICLR 2022—你不应该错过的 10 篇论文(上)

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 ICLR 2023已经放榜&#xff0c;但是今天我们先来回顾一下去年的ICLR 2022&#xff01; ICLR 2022将于2022年 4 月 25 日星期一至 4 月 29 日星期五在线举行&#xff08;连续第三年&#xff01;&#xf…...

HydroD 实用教程(三)环境数据

目 录一、前言二、Location三、Wind Profile四、Directions五、Water5.1 Wave Spectrums5.2 Current Profile5.3 Frequency Set5.4 Phase Set5.5 Wave Height5.6 Regular Wave Set六、参考文献一、前言 SESAM &#xff08;Super Element Structure Analysis Module&#xff09;…...

第四章 统计机器学习

机器学习&#xff1a;从数据中学习知识&#xff1b; 原始数据中提取特征&#xff1b;学习映射函数f&#xff1b;通过映射函数f将原始数据映射到语义空间&#xff0c;即寻找数据和任务目标之间的关系&#xff1b; 机器学习&#xff1a; 监督学习&#xff1a;数据有标签&#x…...

Redis第一讲

目录 一、Redis01 1.1 NoSql 1.1.1 NoSql介绍 1.1.2 NoSql起源 1.1.3 NoSql的使用 1.2 常见NoSql数据库介绍 1.3 Redis简介 1.3.1 Redis介绍 1.3.2 Redis数据结构的多样性 1.3.3 Redis应用场景 1.4 Redis安装、配置以及使用 1.4.1 Redis安装的两种方式 1.4.2 Redi…...

Java面试题-消息队列

消息队列 1. 消息队列的使用场景 六字箴言&#xff1a;削峰、异步、解耦 削峰&#xff1a;接口请求在某个时间段内会出现峰值&#xff0c;服务器在达到峰值的情况下会奔溃&#xff1b;通过消息队列将请求进行分流、限流&#xff0c;确保服务器在正常环境下处理请求。异步&am…...

基于离散时间频率增益传感器的P级至M级PMU模型的实现(Matlab代码实现)

&#x1f468;‍&#x1f393;个人主页&#xff1a;研学社的博客&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5;&#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...