基于MATLAB的MIMO信道估计(附完整代码与分析)
目录
一. 介绍
二. MATLAB代码
三. 运行结果与分析
一. 介绍
本篇将在MATLAB的仿真环境中对比MIMO几种常见的信道估计方法的性能。
有关MIMO的介绍可看转至此篇博客:
MIMO系统模型构建_唠嗑!的博客-CSDN博客
在所有无线通信中,信号通过信道会出现失真,或者会添加各种噪声。正确解码接收到的信号就需要消除信道施加的失真和噪声。为了弄清信道的特性,就需要信道估计。
信道估计有很多不同的方法,但是通用的流程可概括如下:
- 设置一个数学模型,利用信道矩阵搭建起发射信号和接收信号之间的关系;
- 发射已知信号(通常称为参考信号或导频信号)并检测接收到的信号;
- 通过对比发送信号和接收信号,确定信道矩阵中的每个元素。
二. MATLAB代码
一共有四个代码,包含三个函数代码和一个主运行代码。
主运行代码用来产生最后的图像
(1)main.m文件代码
%由于信道数据随机产生,每次运行出的图像可能有略微差异%初始化
close all;
clear all;%%设定仿真参数rng('shuffle'); %产生随机化种子,也可以使用另一函数randn('state',sum(100*clock));%设定蒙特卡洛仿真的数目
nbrOfMonteCarloRealizations = 1000;nbrOfCouplingMatrices = 50; %相关矩阵数目Nt = 8; %发射天线的数量,训练序列的长度
Nr = 4; %接收天线的数量%训练的总功率
totalTrainingPower_dB = 0:1:20; %单位为dB
totalTrainingPower = 10.^(totalTrainingPower_dB/10); %转为线性范围%最优化算法
option = optimset('Display','off','TolFun',1e-7,'TolCon',1e-7,'Algorithm','interior-point');%比较不同的信道估计算法
%实用蒙特卡洛仿真法
average_MSE_MMSE_estimator_optimal = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %最优训练下的MMSE估计法
average_MSE_MMSE_estimator_heuristic = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %启发训练下的MMSE估计法
average_MSE_MVU_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %最优训练下的MVU估计法
average_MSE_onesided_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %单边线性估计法
average_MSE_twosided_estimator = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,2); %双边线性估计法%随机信道统计量下的迭代
for statisticsIndex = 1:nbrOfCouplingMatrices%产生Weichselberger模型下的耦合矩阵V%元素均来自卡方分布(自由度为2)V = abs(randn(Nr,Nt)+1i*randn(Nr,Nt)).^2;V = Nt*Nr*V/sum(V(:)); %将矩阵Frobenius范数设为 Nt x Nr.%计算耦合矩阵的协方差矩阵R = diag(V(:));R_T = diag(sum(V,1)); %在Weichselberger模型下,计算发射端的协方差矩阵R_R = diag(sum(V,2)); %在Weichselberger模型下,计算接收端的协方差矩阵%使用MATLAB内置自带的优化算法,计算MMSE估计法下最优的训练功率分配trainingpower_MMSE_optimal = zeros(Nt,length(totalTrainingPower)); %每个训练序列的功率分配向量for k = 1:length(totalTrainingPower) %遍历每个训练序列的功率分配trainingpower_initial = totalTrainingPower(k)*ones(Nt,1)/Nt; %初始设定功率均相等%使用fmincon函数来最优化功率分配%最小化MSE,所有功率均非负trainingpower_MMSE_optimal(:,k) = fmincon(@(q) functionMSEmatrix(R,q,Nr),trainingpower_initial,ones(1,Nt),totalTrainingPower(k),[],[],zeros(Nt,1),totalTrainingPower(k)*ones(Nt,1),[],option);end%计算功率分配[eigenvalues_sorted,permutationorder] = sort(diag(R_T),'descend'); %计算和整理特征值[~,inversePermutation] = sort(permutationorder); %记录特征值的orderq_MMSE_heuristic = zeros(Nt,length(totalTrainingPower));for k = 1:length(totalTrainingPower) %遍历每个训练功率alpha_candidates = (totalTrainingPower(k)+cumsum(1./eigenvalues_sorted(1:Nt,1)))./(1:Nt)'; %计算拉格朗日乘子的不同值optimalIndex = find(alpha_candidates-1./eigenvalues_sorted(1:Nt,1)>0 & alpha_candidates-[1./eigenvalues_sorted(2:end,1); Inf]<0); %找到拉格朗日乘子的αq_MMSE_heuristic(:,k) = max([alpha_candidates(optimalIndex)-1./eigenvalues_sorted(1:Nt,1) zeros(Nt,1)],[],2); %使用最优的α计算功率分配endq_MMSE_heuristic = q_MMSE_heuristic(inversePermutation,:); %通过重新整理特征值来确定最终的功率分配%计算均匀功率分配q_uniform = (ones(Nt,1)/Nt)*totalTrainingPower;%蒙特卡洛仿真初始化vecH_realizations = sqrtm(R)*( randn(Nt*Nr,nbrOfMonteCarloRealizations)+1i*randn(Nt*Nr,nbrOfMonteCarloRealizations) ) / sqrt(2); %以向量的形式产生信道 vecN_realizations = ( randn(Nt*Nr,nbrOfMonteCarloRealizations)+1i*randn(Nt*Nr,nbrOfMonteCarloRealizations) ) / sqrt(2); %以向量的形式产生噪声%对于每种估计方法计算MSE和训练功率for k = 1:length(totalTrainingPower)%MMSE估计法:最优训练功率分配P_tilde = kron(diag(sqrt(trainingpower_MMSE_optimal(:,k))),eye(Nr)); %计算有效功率矩阵average_MSE_MMSE_estimator_optimal(k,statisticsIndex,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R); %计算MSEH_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations+vecN_realizations); %使用蒙特卡洛仿真来计算该估计average_MSE_MMSE_estimator_optimal(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE%MMSE估计法:启发式训练功率分配MMSE P_tilde = kron(diag(sqrt(q_MMSE_heuristic(:,k))),eye(Nr)); %计算有效训练矩阵average_MSE_MMSE_estimator_heuristic(k,statisticsIndex,1) = trace(R - (R*P_tilde'/(P_tilde*R*P_tilde' + eye(length(R))))*P_tilde*R); %计算MSEH_hat = (R*P_tilde'/(P_tilde*R*P_tilde'+eye(length(R)))) * (P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计average_MSE_MMSE_estimator_heuristic(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE%MVY估计法: 最优均匀训练功率分配P_training = diag(sqrt(q_uniform(:,k))); %均匀功率分配P_tilde = kron(transpose(P_training),eye(Nr)); %计算有效训练矩阵P_tilde_pseudoInverse = kron((P_training'/(P_training*P_training'))',eye(Nr)); %计算有效训练矩阵的伪逆average_MSE_MVU_estimator(k,statisticsIndex,1) = Nt^2*Nr/totalTrainingPower(k); %计算MSEH_hat = P_tilde_pseudoInverse'*(P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计average_MSE_MVU_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSE%One-sided linear 估计法: 最优训练功率分配又被称为 "LMMSE 估计法" P_training = diag(sqrt(q_MMSE_heuristic(:,k))); %使用最优功率分配来计算训练矩阵 P_tilde = kron(P_training,eye(Nr)); %计算有效训练矩阵average_MSE_onesided_estimator(k,statisticsIndex,1) = trace(inv(inv(R_T)+P_training*P_training'/Nr)); %计算MSEAo = (P_training'*R_T*P_training + Nr*eye(Nt))\P_training'*R_T; %计算one-sided linear估计法中的矩阵A0 H_hat = kron(transpose(Ao),eye(Nr))*(P_tilde*vecH_realizations + vecN_realizations); %使用蒙特卡洛仿真来计算该估计average_MSE_onesided_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MS%Two-sided linear 估计法: 最优训练功率分配P_training = diag(sqrt(q_uniform(:,k))); %计算训练矩阵,均匀功率分配P_tilde = kron(P_training,eye(Nr)); %计算有效训练矩阵R_calE = sum(1./q_uniform(:,k))*eye(Nr); %计算协方差矩阵average_MSE_twosided_estimator(k,statisticsIndex,1) = trace(R_R-(R_R/(R_R+R_calE))*R_R); %计算MSEC1 = inv(P_training); %计算矩阵C1C2bar = R_R/(R_R+R_calE); %计算C2bar矩阵H_hat = kron(transpose(C1),C2bar)*(P_tilde*vecH_realizations + vecN_realizations);average_MSE_twosided_estimator(k,statisticsIndex,2) = mean( sum(abs(vecH_realizations - H_hat).^2,1) ); %使用蒙特卡洛仿真来计算MSendend%挑选训练功率的子集
subset = linspace(1,length(totalTrainingPower_dB),5);normalizationFactor = Nt*Nr; %设定MSE标准化因子为trace(R), 标准化MSE为从0到1.%使用理论MSE公式画图
figure(1); hold on; box on;plot(totalTrainingPower_dB,mean(average_MSE_MVU_estimator(:,:,1),2)/normalizationFactor,'b:','LineWidth',2);plot(totalTrainingPower_dB,mean(average_MSE_twosided_estimator(:,:,1),2)/normalizationFactor,'k-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_onesided_estimator(:,:,1),2)/normalizationFactor,'r-','LineWidth',1);plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_heuristic(subset(1),:,1),2)/normalizationFactor,'b+-.','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_optimal(subset(1),:,1),2)/normalizationFactor,'ko-','LineWidth',1);legend('MVU, optimal','Two-sided linear, optimal','One-sided linear, optimal','MMSE, heuristic','MMSE, optimal','Location','SouthWest')plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_heuristic(:,:,1),2)/normalizationFactor,'b-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_optimal(:,:,1),2)/normalizationFactor,'k-','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_heuristic(subset,:,1),2)/normalizationFactor,'b+','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_optimal(subset,:,1),2)/normalizationFactor,'ko','LineWidth',1);set(gca,'YScale','Log'); %纵轴为log范围
xlabel('Total Training Power (dB)');
ylabel('Average Normalized MSE');
axis([0 totalTrainingPower_dB(end) 0.05 1]);title('Results based on theoretical formulas');%使用蒙特卡洛仿真画理论运算图
figure(2); hold on; box on;plot(totalTrainingPower_dB,mean(average_MSE_MVU_estimator(:,:,2),2)/normalizationFactor,'b:','LineWidth',2);
plot(totalTrainingPower_dB,mean(average_MSE_twosided_estimator(:,:,2),2)/normalizationFactor,'k-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_onesided_estimator(:,:,2),2)/normalizationFactor,'r-','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_heuristic(subset(1),:,2),2)/normalizationFactor,'b+-.','LineWidth',1);
plot(totalTrainingPower_dB(subset(1)),mean(average_MSE_MMSE_estimator_optimal(subset(1),:,2),2)/normalizationFactor,'ko-','LineWidth',1);legend('MVU, optimal','Two-sided linear, optimal','One-sided linear, optimal','MMSE, heuristic','MMSE, optimal','Location','SouthWest')plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_heuristic(:,:,2),2)/normalizationFactor,'b-.','LineWidth',1);
plot(totalTrainingPower_dB,mean(average_MSE_MMSE_estimator_optimal(:,:,2),2)/normalizationFactor,'k-','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_heuristic(subset,:,2),2)/normalizationFactor,'b+','LineWidth',1);
plot(totalTrainingPower_dB(subset),mean(average_MSE_MMSE_estimator_optimal(subset,:,2),2)/normalizationFactor,'ko','LineWidth',1);set(gca,'YScale','Log'); %纵轴为log范围
xlabel('Total Training Power (dB)');
ylabel('Average Normalized MSE');
axis([0 totalTrainingPower_dB(end) 0.05 1]);title('Results based on Monte-Carlo simulations');
包含每行具体代码的解释
(2)三个函数文件
function [deviation,powerAllocation]=functionLagrangeMultiplier(eigenvaluesTransmitter,totalPower,k,alpha)
%Compute the MSE for estimation of the squared Frobenius norm of the
%channel matrix for a given training power allocation.
%INPUT:
%eigenvaluesTransmitter = Vector with the active eigenvalues at the
% transmitter side
%totalPower = Total power of the training sequence
%k = Vector with k parameter values
%alpha = Langrange multiplier value
%
%OUTPUT:
%deviation = Difference between available power and used power
%powerAllocation = Training power allocation
%Compute power allocation
powerAllocation = sqrt(8*(1./alpha(:))*eigenvaluesTransmitter'/3).*cos(repmat((-1).^k*pi/3,[length(alpha) 1])-atan(sqrt(8*(1./alpha(:))*(eigenvaluesTransmitter.^3)'/27-1))/3)-repmat(1./eigenvaluesTransmitter',[length(alpha) 1]);%Deviation between total available power and the power that is used
deviation = abs(totalPower-sum(powerAllocation,2));
function MSE = functionMSEmatrix(R_diag,q_powerallocation,B)
%Compute the MSE for estimation of the channel matrix for a given training
%power allocation.
%INPUT:
%R_diag = Nt Nr x Nt Nr diagonal covariance matrix
%q_powerallocation = Nt x 1 vector with training power allocation
%B = Length of the training sequence.
%
%OUTPUT:
%MSE = Mean Squared Error for estimation of the channel matrixP_tilde = kron(diag(sqrt(q_powerallocation)),eye(B));MSE = trace(R_diag - R_diag*(P_tilde'/(P_tilde*R_diag*P_tilde'+eye(length(R_diag))))*P_tilde*R_diag);
function MSE = functionMSEnorm(eigenvaluesTransmitter,eigenvaluesReceiver,powerAllocation)
%Compute the MSE for estimation of the squared Frobenius norm of the
%channel matrix for a given training power allocation.
%INPUT:
%eigenvaluesTransmitter = Nt x 1 vector with eigenvalues at the
% transmitter side
%eigenvaluesReceiver = Nr x 1 vector with eigenvalues at the
% receiver side
%powerAllocation = Nt x 1 vector with training power allocation
%
%OUTPUT:
%MSE = Mean Squared Error for estimation of the squared normMSE = sum(sum(((eigenvaluesTransmitter*eigenvaluesReceiver').^2 + 2*(powerAllocation.*eigenvaluesTransmitter.^3)*(eigenvaluesReceiver').^3)./(1+(powerAllocation.*eigenvaluesTransmitter)*eigenvaluesReceiver').^2));
注意:
- 此MIMO发射天线为8,接收天线为4;
- 三个函数文件的命名需要与函数保持一致;
- 先运行函数文件,再运行main主文件;
- 函数文件出现变量数报错是正常现象;
- 运行出来有两个图,选择任意一个图即可。
三. 运行结果与分析

分析:
- 横向看,当训练功率增加时,均方误差(MSE)在减小,符合信道估计的基本逻辑;
- 纵向对比,MMSE(optimal)》MMSE(heuristic)》one-sided linear》two-side linear>MVU
》代表左边优于右边,每一个位置代表一种信道估计方法
相关文章:
基于MATLAB的MIMO信道估计(附完整代码与分析)
目录 一. 介绍 二. MATLAB代码 三. 运行结果与分析 一. 介绍 本篇将在MATLAB的仿真环境中对比MIMO几种常见的信道估计方法的性能。 有关MIMO的介绍可看转至此篇博客: MIMO系统模型构建_唠嗑!的博客-CSDN博客 在所有无线通信中,信号通过…...
Python代码游戏————星球大战
♥️作者:小刘在C站 ♥️个人主页:小刘主页 ♥️每天分享云计算网络运维课堂笔记,努力不一定有收获,但一定会有收获加油!一起努力,共赴美好人生! ♥️夕阳下,是最美的绽放,树高千尺,落叶归根人生不易,人间真情 目录 一.Python介绍 二.游戏效果呈现 三.主代码 四....
java向Word模板中替换书签数据,插入图片,插入复选框,插入Word中表格的行数据,删除表格行数据
java向Word模板中替换书签数据,插入图片,插入复选框,插入Word中表格的行数据,删除表格行数据 使用插件:spire.doc 创建工具类,上代码: import com.spire.doc.Document; import com.spire.doc.…...
Java基础知识快速盘点(二)
一,类型转换 隐式转换 将一个类型转换为另一个类型时,系统默认转换常量优化机制算术运算时类型的隐式转换(byte,short在算术运算时都会转换为int)char类型在进行运算时会根据其编码值进行运算 显式转换 二࿰…...
企业降本增效的催化剂:敏捷迭代
伴随着开源技术的大爆发,新一代的软件技术如雨后春笋般层出不穷。每家企业在硬件及软件开发上都有许多开源技术可选,目的还是在于提高效率,降低开发成本。 本篇文章,带大家了解下促进企业降本增效的重要理念:敏捷迭代…...
MySQL入门篇-MySQL高级窗口函数简介
备注:测试数据库版本为MySQL 8.0 这个blog我们来聊聊MySQL高级窗口函数 窗口函数在复杂查询以及数据仓库中应用得比较频繁 与sql打交道比较多的技术人员都需要掌握 如需要scott用户下建表及录入数据语句,可参考:scott建表及录入数据sql脚本 分析函数有3个基本组成…...
什么是 API(应用程序接口)?
API(应用程序接口)是一种软件中介,它允许两个不相关的应用程序相互通信。它就像一座桥梁,从一个程序接收请求或消息,然后将其传递给另一个程序,翻译消息并根据 API 的程序设计执行协议。API 几乎存在于我们…...
如何在外网访问内网的 Nginx 服务?
计算机业内人士对Nginx 并不陌生,它是一款轻量级的 Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,除了nginx外,类似的apache、tomcat、IIS这几种都是主流的中间件。 Nginx 是在 BSD-like 协议下发行的&…...
vue2中defineProperty和vue3中proxy区别
区别一:defineProperty 是对属性劫持,proxy 是对代理对象 下面我们针对一个对象使用不同的方式进行监听,看写法上有什么不同。 // 原始对象 const data {name: Jane,age: 21 }defineProperty defineProperty 只能劫持对象的某一个属性&…...
将bean注入Spring容器的五种方式
前言 我们在项目开发中都用到Spring,知道对象是交由Spring去管理。那么将一个对象加入到Spring容器中,有几种方法呢,我们来总结一下。 ComponentScan Component ComponentScan可以放在启动类上,指定要扫描的包路径;…...
C生万物 | 常量指针和指针常量的感性理解
文章目录📚引言✒常量指针🔍介绍与分析📰小结与记忆口诀✒指针常量🔍介绍与分析📰小结与记忆口诀👉一份凉皮所引发的故事👈总结与提炼📚引言 本文我们来说说大家很困惑的两个东西&am…...
python 打包工具 pyinstaller和Nuitka区别
1.1 使用需求 这次也是由于项目需要,要将python的代码转成exe的程序,在找了许久后,发现了2个都能对python项目打包的工具——pyintaller和nuitka。 这2个工具同时都能满足项目的需要: 隐藏源码。这里的pyinstaller是通过设置key来…...
Python解题 - CSDN周赛第28期
上一期周赛问哥因为在路上,无法参加,但还是抽空登上来看了一下题目。4道题都挺简单的,有点遗憾未能参加。不过即使参加了,手速也未必能挤进前十。 本期也是一样,感觉新增的题目都偏数学类,基本用不到所谓的…...
DNS记录类型有哪些,分别代表什么含义?
DNS解析将域名指向IP地址,是互联网中的一项重要服务。而由于业务场景不同,在设置DNS解析时,需要选择不同的记录类型。网站管理人员需要准确了解每一种DNS记录类型所代表的含义和用途,才能满足不同场景的解析需求。本文中科三方简单…...
ICLR 2022—你不应该错过的 10 篇论文(上)
CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 ICLR 2023已经放榜,但是今天我们先来回顾一下去年的ICLR 2022! ICLR 2022将于2022年 4 月 25 日星期一至 4 月 29 日星期五在线举行(连续第三年!…...
HydroD 实用教程(三)环境数据
目 录一、前言二、Location三、Wind Profile四、Directions五、Water5.1 Wave Spectrums5.2 Current Profile5.3 Frequency Set5.4 Phase Set5.5 Wave Height5.6 Regular Wave Set六、参考文献一、前言 SESAM (Super Element Structure Analysis Module)…...
第四章 统计机器学习
机器学习:从数据中学习知识; 原始数据中提取特征;学习映射函数f;通过映射函数f将原始数据映射到语义空间,即寻找数据和任务目标之间的关系; 机器学习: 监督学习:数据有标签&#x…...
Redis第一讲
目录 一、Redis01 1.1 NoSql 1.1.1 NoSql介绍 1.1.2 NoSql起源 1.1.3 NoSql的使用 1.2 常见NoSql数据库介绍 1.3 Redis简介 1.3.1 Redis介绍 1.3.2 Redis数据结构的多样性 1.3.3 Redis应用场景 1.4 Redis安装、配置以及使用 1.4.1 Redis安装的两种方式 1.4.2 Redi…...
Java面试题-消息队列
消息队列 1. 消息队列的使用场景 六字箴言:削峰、异步、解耦 削峰:接口请求在某个时间段内会出现峰值,服务器在达到峰值的情况下会奔溃;通过消息队列将请求进行分流、限流,确保服务器在正常环境下处理请求。异步&am…...
基于离散时间频率增益传感器的P级至M级PMU模型的实现(Matlab代码实现)
👨🎓个人主页:研学社的博客💥💥💞💞欢迎来到本博客❤️❤️💥💥🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
