【Python--torch.nn.functional】F.normalize用法 + 代码说明
【Python–torch.nn.functional】F.normalize介绍 + 代码说明
文章目录
- 【Python--torch.nn.functional】F.normalize介绍 + 代码说明
- 1. 介绍
- 2. 代码说明
- 2.1 一维Tensor
- 2.2 二维Tensor
- 2.3 三维Tensor
- 3. 总结
1. 介绍
import torch.nn.functional as F
F.normalize(input: Tensor, p: float = 2.0, dim: int = 1, eps: float = 1e-12) -> Tensor
- input: 是一个任意维度的Tensor类型的数据
- p:默认为2,表示2范数;同理,p=1表示1范数
- dim:
- 默认为1,在输入数据input的shape是二维的且p=2情况下,表示对行进行操作,即所有元素除以第一行元素的根号下平方和;
- dim=0 时,在输入数据input的shape是二维的且p=2情况下,表示对列进行操作,即所有元素除以第一列元素的根号下平方和;
- dim为其他值时,之后通过代码分析。
- eps:默认为1e-12,防止除0。
因此,Normalize对应的公式为:
2. 代码说明
2.1 一维Tensor
c = torch.Tensor([1, 2, 3])
print(F.normalize(c, dim=0))
'''
tensor([0.2673, 0.5345, 0.8018])
torch.Size([3])
解释:
默认dim=1,是按行操作,但是一维的Tensor是列向量,所以必须指定dim=0
默认p=2,所以这个一维的Tensor(列向量)每个元素都除以sqrt(1**2 + 2**2 + 3**2)
'''
2.2 二维Tensor
import torch.nn.functional as F
import torcha = torch.arange(20, dtype=torch.float).reshape(4,5)
b = F.normalize(a, dim=0)
c = F.normalize(a, dim=1)
print(a)
print(b)
print(c)
输出:
# 输入的数组
tensor([[ 0., 1., 2., 3., 4.],[ 5., 6., 7., 8., 9.],[10., 11., 12., 13., 14.],[15., 16., 17., 18., 19.]])
# dim=0时,即沿第一维度(列)做归一化
tensor([[0.0000, 0.0491, 0.0907, 0.1261, 0.1564],[0.2673, 0.2949, 0.3175, 0.3363, 0.3519],[0.5345, 0.5406, 0.5443, 0.5464, 0.5474],[0.8018, 0.7864, 0.7711, 0.7566, 0.7430]])
# dim=1时,即沿第二维度(行)做归一化
# 维度记忆技巧:最后一个维度始终是行,从后向前推:行、列、通道
tensor([[0.0000, 0.1826, 0.3651, 0.5477, 0.7303],[0.3131, 0.3757, 0.4384, 0.5010, 0.5636],[0.3701, 0.4071, 0.4441, 0.4812, 0.5182],[0.3932, 0.4195, 0.4457, 0.4719, 0.4981]])
2.3 三维Tensor
a = torch.Tensor([[[1, 2, 3], [4, 5, 6]], [[10, 20, 30], [40, 50, 60]]]) # (2, 2, 3)print(F.normalize(a)) # dim = 1, 举个例子,1、4为1组,进行norm。print(F.normalize(a, dim=0)) # dim = 0, 1、10为1组,进行norm。print(F.normalize(a, dim=2)) # dim = 2, 1、2、3为1组,进行norm。'''
tensor([[[0.2425, 0.3714, 0.4472],[0.9701, 0.9285, 0.8944]],[[0.2425, 0.3714, 0.4472],[0.9701, 0.9285, 0.8944]]])tensor([[[0.0995, 0.0995, 0.0995],[0.0995, 0.0995, 0.0995]],[[0.9950, 0.9950, 0.9950],[0.9950, 0.9950, 0.9950]]])tensor([[[0.2673, 0.5345, 0.8018],[0.4558, 0.5698, 0.6838]],[[0.2673, 0.5345, 0.8018],[0.4558, 0.5698, 0.6838]]])
'''
3. 总结
- 按照指定Tensor最大的dim的去norm时,就是对物理存储地址挨着最紧密的那一维进行norm。
- 当dim为2,此时dim最大,就是对1、2、3(物理存储地址最紧密)为一组进行norm。
- 当dim为1,则降一维度,对物理存储地址次紧密的元素为一组进行norm。也就是1、4为一组。
- 当dim为0,就是按照最远的一组。
相关文章:

【Python--torch.nn.functional】F.normalize用法 + 代码说明
【Python–torch.nn.functional】F.normalize介绍 代码说明 文章目录【Python--torch.nn.functional】F.normalize介绍 代码说明1. 介绍2. 代码说明2.1 一维Tensor2.2 二维Tensor2.3 三维Tensor3. 总结1. 介绍 import torch.nn.functional as F F.normalize(input: Tensor, …...
【算法题】1887. 使数组元素相等的减少操作次数
插: 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 坚持不懈,越努力越幸运,大家一起学习鸭~~~ 题目: 给你一个整数数组 nums ࿰…...

GD库图片裁剪指定形状解决办法(PHP GD库 海报)
需求描述:需要把图片裁剪成一个指定的平行四边形,目的是使用GD库,把裁剪后的图片放在底图上面,使最终合成的图片看起来是一个底图平行四边形的样子提示:可以结合本作者的其他文章,来生成一个定制化的海报&a…...
redis的简介及应用场景
1、基本信息 Redis英文官网介绍: Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache and message broker. It supports data structures such as strings, hashes, lists, sets, sorted sets with range queri…...
2、HAL库利用滴答定时器systick(1ms中断)实现时间计数戳
文档说明:通过滴答定时器的1ms中断实现时间计数,标记需要的时间标志,在主函数中查询标志,避免延时函数消耗CPU 1、HAL库systick定时器说明 在CubeMx生成的代码main()函数首先执行的函数为HAL_Init();里面会进行滴答定时器初始化…...

Spring入门学习
Spring入门学习 文章目录Spring入门学习Spring概述Spring FrameworkIOCIOC容器DIIOC容器的实现类①FileSystemXmlApplicationContext②ClassPathXmlApplicationContext基于XML管理bean入门案例创建类创建xml在Spring配置文件中配置bean测试Spring概述 Spring 是最受欢迎的企业级…...

webpack(4版本)使用
webpack简介:webpack 是一种前端资源构建工具,一个静态模块打包器(module bundler)。在 webpack 看来, 前端的所有资源文件(js/json/css/img/less/...)都会作为模块处理。它将根据模块的依赖关系进行静态分析,打包生成对应的静态资源(bundle)…...

Linux安装ElasticSearch
下载地址:https://www.elastic.co/cn/downloads/past-releases#elasticsearch 1 版本选择 ElasticSearch 7 及以上版本都是自带的 jdk,假如需要配置指定的 jdk 版本的话,可以在 es 的 bin 目录下找到elasticsearch-env.bat 这个文件&#x…...
Linux中C语言编程经验总结
修改记录 版本号日期更改理由V1.02022-03-15MD化 总则 仅总结一些常用且实用的编程规范和技巧,且避免记忆负担,聚焦影响比较大的20% ! 编译器 打开全warning编译器开关 正例 gcc -W -Wall -g -o someProc main.c反例 gcc -g -o someProc main…...

jvisualvm工具使用
jdk自带的工具jvisualvm,可以分析java内存使用情况,jvm相关的信息。 1、设置jvm启动参数 设置jvm参数**-Xms20m -Xmx20m -XX:PrintGCDetails** 最小和最大堆内存,打印gc详情 2、测试代码 TestScheduleClassGc package com.core.schedule;…...

redis五大IO网络模型、内存回收
目录1.0用户空间和内核态空间1.1 网络模型-阻塞IO1.2 网络模型-非阻塞IO1.3 网络模型-IO多路复用1.3.1 网络模型-IO多路复用-select方式1.3.2 网络模型-IO多路复用模型-poll模式1.3.3 网络模型-IO多路复用模型-epoll函数1.3.4 网络模型-epoll中的ET和LT1.3.5 网络模型-基于epol…...

【C/C++】内存管理详解
目录内存布局思维导图1.C/C内存分布数据段:栈:代码段:堆:2.C语言中动态内存管理方式3.C内存管理方式3.1new/delete操作内置类型3.2new和delete操作自定义类型4.operator new 与 operator delete函数5.new和delete的实现原理5.1内置类型5.2自定…...
Android ProcessLifecycleOwner 观察进程生命周期
文章目录简介使用依赖用法1,结合 LiveData用法2,获取 owner的 lifecycle 实例,并对 lifecycle 添加观察者简介 ProcessLifecycleOwner 直译,就是,进程生命周期所有者。 通过 DOC 注释了解到: Lifecycle.E…...

如何编写一个 npm 插件?
提到写 npm 插件,很多没搞过的可能第一感觉觉得很难,无从下手,其实不然。 我们甚至写个简单的 console.log(hello word),都是可以当成一个插件发布上去的。 其实无从下手的主要难点还是在于你的具体要做的功能逻辑,这…...
mapstruct- 让VO,DTO,ENTITY转换更加便捷
mapstruct- 让VO,DTO,ENTITY转换更加便捷 1. 简介 MapStruct是一个代码生成器,简化了不同的Java Bean之间映射的处理,所谓映射指的就是从一个实体变化成一个实体。例如我们在实际开发中,DAO层的实体和一些数据传输对…...

IAR警告抑制及还原
工作中需要临时抑制 警告 Pa084,源代码如下: sy_errno_t sy_memset_s(void *dest, sy_rsize_t dmax, int value, sy_rsize_t n) { sy_errno_t err; if (dest NULL) { return SY_ESNULLP; } if (dmax > SY_RSIZE…...

工厂模式(Factory Pattern)
1.什么是工厂模式 定义一个创建对象的接口,让其子类自己决定实例化哪一个工厂类,工厂模式使其创建过程延迟到子类进行。 2.工厂模式的作用 实现创建者和调用者的分离 3.工厂模式的分类 简单工厂模式工厂方法模式抽象工厂模式 4.工厂模式的优缺点 优…...

JavaScript语法学习--《JavaScript编程全解》
《JavaScript编程全解》 JavaScript琐碎基础 0.前言 1.RN: react native是Facebook于2015年4月开源的跨平台移动应用开发框架,是Facebook早先开源的JS框架 React 在原生移动应用平台的衍生产物,支持iOS和安卓两大平台。 2.ts与js js:是弱…...

linux安装极狐gitlab
1. 官网寻找安装方式 不管我们使用任何软件,最靠谱的方式就是查看官方文档。gitlab提供了相应的安装文档,并且有对应的中文文档。地址如下: https://gitlab.cn/install/ 我在这里以CentOS作为安装示例,大家可根据自己的需要选择…...
软考高级信息系统项目管理(高项)原创论文——人力资源管理
人力资源管理 某市某国有装备制造公司智能安防信息管控平台项目是在公司推进企业信息化进程和实现企业可持续发展的背景下于2016年8月提出来的,我公司积极应标并最终顺利中标,而我有幸被任命为项目经理,担任起该项目的管理工作。该项目投资金额为530万元,其中软件部分为360…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成
一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解
一、前言 在HarmonyOS 5的应用开发模型中,featureAbility是旧版FA模型(Feature Ability)的用法,Stage模型已采用全新的应用架构,推荐使用组件化的上下文获取方式,而非依赖featureAbility。 FA大概是API7之…...