TCP/IP网络编程——多种 I/O 函数
完整版文章请参考:
TCP/IP网络编程完整版文章
文章目录
- 第 13 章 多种 I/O 函数
- 13.1 send & recv 函数
- 13.1.1 Linux 中的 send & recv
- 13.1.2 MSG_OOB:发送紧急消息
- 13.1.3 紧急模式工作原理
- 13.1.4 检查输入缓冲
- 13.2 readv & writev 函数
- 13.2.1 使用 readv & writev 函数
- 13.2.2 合理使用 readv & writev 函数
第 13 章 多种 I/O 函数
13.1 send & recv 函数
13.1.1 Linux 中的 send & recv
首先看 send 函数定义:
#include <sys/socket.h>
ssize_t send(int sockfd, const void *buf, size_t nbytes, int flags);
/*
成功时返回发送的字节数,失败时返回 -1
sockfd: 表示与数据传输对象的连接的套接字和文件描述符
buf: 保存待传输数据的缓冲地址值
nbytes: 待传输字节数
flags: 传输数据时指定的可选项信息
*/
下面是 recv 函数的定义:
#include <sys/socket.h>
ssize_t recv(int sockfd, void *buf, size_t nbytes, int flags);
/*
成功时返回接收的字节数(收到 EOF 返回 0),失败时返回 -1
sockfd: 表示数据接受对象的连接的套接字文件描述符
buf: 保存接受数据的缓冲地址值
nbytes: 可接收的最大字节数
flags: 接收数据时指定的可选项参数
*/
end 和 recv 函数的最后一个参数是收发数据的可选项,该选项可以用位或(bit OR)运算符(| 运算符)同时传递多个信息。
send & recv 函数的可选项意义:
| 可选项(Option) | 含义 | send | recv |
|---|---|---|---|
| MSG_OOB | 用于传输带外数据(Out-of-band data) | O | O |
| MSG_PEEK | 验证输入缓冲中是否存在接受的数据 | X | O |
| MSG_DONTROUTE | 数据传输过程中不参照本地路由(Routing)表,在本地(Local)网络中寻找目的地 | O | X |
| MSG_DONTWAIT | 调用 I/O 函数时不阻塞,用于使用非阻塞(Non-blocking)I/O | O | O |
| MSG_WAITALL | 防止函数返回,直到接收到全部请求的字节数 | X | O |
13.1.2 MSG_OOB:发送紧急消息
MSG_OOB 可选项用于创建特殊发送方法和通道以发送紧急消息。下面为 MSG_OOB 的示例代码:
oob_send.c 程序:
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <arpa/inet.h>#define BUF_SIZE 30
void error_handling(char *message);int main(int argc, char *argv[])
{int sock;struct sockaddr_in recv_adr;if (argc != 3){printf("Usage : %s <IP> <port>\n", argv[0]);exit(1);}sock = socket(PF_INET, SOCK_STREAM, 0);memset(&recv_adr, 0, sizeof(recv_adr));recv_adr.sin_family = AF_INET;recv_adr.sin_addr.s_addr = inet_addr(argv[1]);recv_adr.sin_port = htons(atoi(argv[2]));if (connect(sock, (struct sockaddr *)&recv_adr, sizeof(recv_adr)) == -1)error_handling("connect() error");write(sock, "123", strlen("123"));send(sock, "4", strlen("4"), MSG_OOB);write(sock, "567", strlen("567"));send(sock, "890", strlen("890"), MSG_OOB);close(sock);return 0;
}void error_handling(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}
oob_recv.c 程序:
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <fcntl.h>#define BUF_SIZE 30
void error_handling(char *message);
void urg_handler(int signo);int acpt_sock;
int recv_sock;int main(int argc, char *argv[])
{struct sockaddr_in recv_adr, serv_adr;int str_len, state;socklen_t serv_adr_sz;struct sigaction act;char buf[BUF_SIZE];if (argc != 2){printf("Usage : %s <port>\n", argv[0]);exit(1);}act.sa_handler = urg_handler;sigemptyset(&act.sa_mask);act.sa_flags = 0;acpt_sock = socket(PF_INET, SOCK_STREAM, 0);memset(&recv_adr, 0, sizeof(recv_adr));recv_adr.sin_family = AF_INET;recv_adr.sin_addr.s_addr = htonl(INADDR_ANY);recv_adr.sin_port = htons(atoi(argv[1]));if (bind(acpt_sock, (struct sockaddr *)&recv_adr, sizeof(recv_adr)) == -1)error_handling("bind() error");listen(acpt_sock, 5);serv_adr_sz = sizeof(serv_adr);recv_sock = accept(acpt_sock, (struct sockaddr *)&serv_adr, &serv_adr_sz);//将文件描述符 recv_sock 指向的套接字拥有者(F_SETOWN)改为把getpid函数返回值用做id的进程fcntl(recv_sock, F_SETOWN, getpid());state = sigaction(SIGURG, &act, 0); //SIGURG 是一个信号,当接收到 MSG_OOB 紧急消息时,系统产生SIGURG信号while ((str_len = recv(recv_sock, buf, sizeof(buf), 0)) != 0){if (str_len == -1)continue;buf[str_len] = 0;puts(buf);}close(recv_sock);close(acpt_sock);return 0;
}
void urg_handler(int signo)
{int str_len;char buf[BUF_SIZE];str_len = recv(recv_sock, buf, sizeof(buf) - 1, MSG_OOB);buf[str_len] = 0;printf("Urgent message: %s \n", buf);
}void error_handling(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}
编译运行:
gcc oob_send.c -o send
gcc oob_recv.c -o recv
运行结果:

从运行结果可以看出,send 是客户端,recv 是服务端,客户端给服务端发送消息,服务端接收完消息之后显示出来。可以从图中看出,每次运行的效果,并不是一样的。
代码中关于:
fcntl(recv_sock, F_SETOWN, getpid());
的意思是:
文件描述符 recv_sock 指向的套接字引发的 SIGURG 信号处理进程变为 getpid 函数返回值用作 ID 进程.
上述描述中的「处理 SIGURG 信号」指的是「调用 SIGURG 信号处理函数」。但是之前讲过,多个进程可以拥有 1 个套接字的文件描述符。例如,通过调用 fork 函数创建子进程并同时复制文件描述符。此时如果发生 SIGURG 信号,应该调用哪个进程的信号处理函数呢?可以肯定的是,不会调用所有进程的信号处理函数。因此,处理 SIGURG 信号时必须指定处理信号所用的进程,而 getpid 返回的是调用此函数的进程 ID 。上述调用语句指当前为处理 SIGURG 信号的主体。
输出结果,可能出乎意料:
通过 MSG_OOB 可选项传递数据时只返回 1 个字节,而且也不快
的确,通过 MSG_OOB 并不会加快传输速度,而通过信号处理函数 urg_handler 也只能读取一个字节。剩余数据只能通过未设置 MSG_OOB 可选项的普通输入函数读取。因为 TCP 不存在真正意义上的「外带数据」。实际上,MSG_OOB 中的 OOB 指的是 Out-of-band ,而「外带数据」的含义是:
通过完全不同的通信路径传输的数据
即真正意义上的 Out-of-band 需要通过单独的通信路径高速传输数据,但是 TCP 不另外提供,只利用 TCP 的紧急模式(Urgent mode)进行传输。
13.1.3 紧急模式工作原理
MSG_OOB 的真正意义在于督促数据接收对象尽快处理数据。这是紧急模式的全部内容,而 TCP 「保持传输顺序」的传输特性依然成立。TCP 的紧急消息无法保证及时到达,但是可以要求急救。下面是 MSG_OOB 可选项状态下的数据传输过程,如图:

上面是:
send(sock, "890", strlen("890"), MSG_OOB);
图上是调用这个函数的缓冲状态。如果缓冲最左端的位置视作偏移量 0 。字符 0 保存于偏移量 2 的位置。另外,字符 0 右侧偏移量为 3 的位置存有紧急指针(Urgent Pointer)。紧急指针指向紧急消息的下一个位置(偏移量加一),同时向对方主机传递以下信息:
紧急指针指向的偏移量为 3 之前的部分就是紧急消息。
也就是说,实际上只用了一个字节表示紧急消息。这一点可以通过图中用于传输数据的 TCP 数据包(段)的结构看得更清楚,如图:

TCP 数据包实际包含更多信息。TCP 头部包含如下两种信息:
- URG=1:载有紧急消息的数据包
- URG指针:紧急指针位于偏移量为 3 的位置。
指定 MSG_OOB 选项的数据包本身就是紧急数据包,并通过紧急指针表示紧急消息所在的位置。
紧急消息的意义在于督促消息处理,而非紧急传输形式受限的信息。
13.1.4 检查输入缓冲
同时设置 MSG_PEEK 选项和 MSG_DONTWAIT 选项,以验证输入缓冲是否存在接收的数据。设置 MSG_PEEK 选项并调用 recv 函数时,即使读取了输入缓冲的数据也不会删除。因此,该选项通常与 MSG_DONTWAIT 合作,用于以非阻塞方式验证待读数据存在与否。下面的示例是二者的含义:
peek_recv.c 程序:
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <arpa/inet.h>#define BUF_SIZE 30
void error_handling(char *message);int main(int argc, char *argv[])
{int acpt_sock, recv_sock;struct sockaddr_in acpt_adr, recv_adr;int str_len, state;socklen_t recv_adr_sz;char buf[BUF_SIZE];if (argc != 2){printf("Usage : %s <port>\n", argv[0]);exit(1);}acpt_sock = socket(PF_INET, SOCK_STREAM, 0);memset(&acpt_adr, 0, sizeof(acpt_adr));acpt_adr.sin_family = AF_INET;acpt_adr.sin_addr.s_addr = htonl(INADDR_ANY);acpt_adr.sin_port = htons(atoi(argv[1]));if (bind(acpt_sock, (struct sockaddr *)&acpt_adr, sizeof(acpt_adr)) == -1)error_handling("bind() error");listen(acpt_sock, 5);recv_adr_sz = sizeof(recv_adr);recv_sock = accept(acpt_sock, (struct sockaddr *)&recv_adr, &recv_adr_sz);while (1){//保证就算不存在待读取数据也不会阻塞str_len = recv(recv_sock, buf, sizeof(buf) - 1, MSG_PEEK | MSG_DONTWAIT);if (str_len > 0)break;}buf[str_len] = 0;printf("Buffering %d bytes : %s \n", str_len, buf);//再次调用 recv 函数,这一次没有设置任何可选项,所以可以直接从缓冲区读出str_len = recv(recv_sock, buf, sizeof(buf) - 1, 0);buf[str_len] = 0;printf("Read again: %s \n", buf);close(acpt_sock);close(recv_sock);return 0;
}void error_handling(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}
peek_send.c 程序:
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <arpa/inet.h>
void error_handling(char *message);int main(int argc, char *argv[])
{int sock;struct sockaddr_in send_adr;if (argc != 3){printf("Usage : %s <IP> <port>\n", argv[0]);exit(1);}sock = socket(PF_INET, SOCK_STREAM, 0);memset(&send_adr, 0, sizeof(send_adr));send_adr.sin_family = AF_INET;send_adr.sin_addr.s_addr = inet_addr(argv[1]);send_adr.sin_port = htons(atoi(argv[2]));if (connect(sock, (struct sockaddr *)&send_adr, sizeof(send_adr)) == -1)error_handling("connect() error");write(sock, "123", strlen("123"));close(sock);return 0;
}void error_handling(char *message)
{fputs(message, stderr);fputc('\n', stderr);exit(1);
}
编译运行:

可以通过结果验证,仅发送了一次的数据被读取了 2 次,因为第一次调用 recv 函数时设置了 MSG_PEEK 可选项。
13.2 readv & writev 函数
13.2.1 使用 readv & writev 函数
readv & writev 函数的功能可概括如下:
对数据进行整合传输及发送的函数
也就是说,通过 writev 函数可以将分散保存在多个缓冲中的数据一并发送,通过 readv 函数可以由多个缓冲分别接收。因此,适用这 2 个函数可以减少 I/O 函数的调用次数。下面先介绍 writev 函数。
#include <sys/uio.h>
ssize_t writev(int filedes, const struct iovec *iov, int iovcnt);
/*
成功时返回发送的字节数,失败时返回 -1
filedes: 表示数据传输对象的套接字文件描述符。但该函数并不仅限于套接字,因此,可以像 read 一样向向其传递文件或标准输出描述符.
iov: iovec 结构体数组的地址值,结构体 iovec 中包含待发送数据的位置和大小信息
iovcnt: 向第二个参数传递数组长度
*/
上述第二个参数中出现的数组 iovec 结构体的声明如下:
struct iovec
{void *iov_base; //缓冲地址size_t iov_len; //缓冲大小
};
下图是该函数的使用方法:

writev 的第一个参数,是文件描述符,因此向控制台输出数据,ptr 是存有待发送数据信息的 iovec 数组指针。第三个参数为 2,因此,从 ptr 指向的地址开始,共浏览 2 个 iovec 结构体变量,发送这些指针指向的缓冲数据。
下面是 writev 函数的使用方法:
#include <stdio.h>
#include <sys/uio.h>int main(int argc, char *argv[])
{struct iovec vec[2];char buf1[] = "ABCDEFG";char buf2[] = "1234567";int str_len;vec[0].iov_base = buf1;vec[0].iov_len = 3;vec[1].iov_base = buf2;vec[1].iov_len = 4;str_len = writev(1, vec, 2);puts("");printf("Write bytes: %d \n", str_len);return 0;
}
结果:
ABC1234
Write bytes: 7
readv 函数,功能和 writev 函数正好相反.函数为:
#include <sys/uio.h>
ssize_t readv(int filedes, const struct iovc *iov, int iovcnt);
/*
成功时返回接收的字节数,失败时返回 -1
filedes: 表示数据传输对象的套接字文件描述符。但该函数并不仅限于套接字,因此,可以像 write 一样向向其传递文件或标准输出描述符.
iov: iovec 结构体数组的地址值,结构体 iovec 中包含待数据保存的位置和大小信息
iovcnt: 第二个参数中数组的长度
*/
下面是示例代码:
readv.c 程序:
#include <stdio.h>
#include <sys/uio.h>
#define BUF_SIZE 100int main(int argc, char *argv[])
{struct iovec vec[2];char buf1[BUF_SIZE] = {0,};char buf2[BUF_SIZE] = {0,};int str_len;vec[0].iov_base = buf1;vec[0].iov_len = 5;vec[1].iov_base = buf2;vec[1].iov_len = BUF_SIZE;str_len = readv(0, vec, 2);printf("Read bytes: %d \n", str_len);printf("First message: %s \n", buf1);printf("Second message: %s \n", buf2);return 0;
}
运行结果:

从图上可以看出,首先截取了长度为 5 的数据输出,然后再输出剩下的。
13.2.2 合理使用 readv & writev 函数
实际上,能使用该函数的所有情况都适用。例如,需要传输的数据分别位于不同缓冲(数组)时,需要多次调用 write 函数。此时可通过 1 次 writev 函数调用替代操作,当然会提高效率。同样,需要将输入缓冲中的数据读入不同位置时,可以不必多次调用 read 函数,而是利用 1 次 readv 函数就能大大提高效率。
其意义在于减少数据包个数。假设为了提高效率在服务器端明确禁用了 Nagle 算法。其实 writev 函数在不采用 Nagle 算法时更有价值,如图:

相关文章:
TCP/IP网络编程——多种 I/O 函数
完整版文章请参考: TCP/IP网络编程完整版文章 文章目录第 13 章 多种 I/O 函数13.1 send & recv 函数13.1.1 Linux 中的 send & recv13.1.2 MSG_OOB:发送紧急消息13.1.3 紧急模式工作原理13.1.4 检查输入缓冲13.2 readv & writev 函数13.2.1…...
静态代理和动态代理的区别以及实现过程
前言 代理模式是一种设计模式,能够使得在不修改源目标的前提下,额外扩展源目标的功能。即通过访问源目标的代理类,再由代理类去访问源目标。这样一来,要扩展功能,就无需修改源目标的代码了。只需要在代理类上增加就可…...
Consul SpringCloudK8S
背景说起微服务,就需要用到SpringCloud,目前市面上主流的SpringCloud产品有这些:SpringCloudNeflix、Spring Cloud Alibaba、Spring Cloud for AWS、Spring Cloud Azure 和 Spring Cloud Kubernetes。其中SpringCloudNeflix已经不在更新&…...
anaconda3文件夹被移动之后,如何操作可以复用原有conda环境
anaconda3文件夹被移动A-调整conda PATH地址B-更改.conda/environments.txt中的地址C-修改conda内的变量和每个环境的pip目录A-调整conda PATH地址 B-更改.conda/environments.txt中的地址 a. 优先切换到用户根目录 b. 查看隐藏conda目录 c. 编辑 vi .conda/environments.txt…...
【Java】Stack(栈) Queue(单向队列) Deque(双向队列)
Stack (栈) Stack 是一个先进后出的栈,可以将其理解为一个只开了一个口子的管子,放进去的东西只能从这一个口进出。所以先放进去的元素在取出的时候只能到最后才能取出来。 Stack具备一下几个方法: boolean empty() …...
自定义spring拦截器
说明: 一些版本比较老的spring框架的,是通过继承HandlerInterceptorAdapter并重写preHandle()方法,和继承WebMvcConfigurerAdapter并重写 addInterceptors()方法来实现拦截器的,但是这两个类很久前就已经过时了,不推荐…...
今天正式上线!虹科汽车免拆诊断云展厅:感受精准修车魅力,畅享汽修领先技术
『虹科汽车免拆诊断云展厅』 2月15日正式上线! 在这里,您可以参观了解: 虹科Pico汽车示波器产品模型 全流程专业讲解的视频资料 产品功能和应用场景 全面详细的产品手册 还有虹科首席技术工程师在线连麦答疑!!…...
4.数据类型-字符串【Python】
文章目录字符串索引切片转义字符格式化符号f-string字符串操作判断&检测转换剪切&填充拼接统计格式转化练习字符串 字符串是 Python 中最常用的数据类型。可以使用单引号,双引号,3对双引号创建一个字符串。Python 中没有单独的字符类型 char…...
搞量化先搞数(上):A股股票列表免费抓取实战
到了这一步,我们学习了基础的爬虫请求库urllib和requests,尤其是后者,强大且易用,极其适合新手使用。那么今天我们就找一个相对简单的案例,来看一下如何在实战中应用爬虫技能。 相信很多朋友都对股票感兴趣,甚至有些朋友想要通过量化研究来获得超额收益。然而,想要进行…...
SpringCloud-负载均衡Ribbon
一、配置使用1、添加依赖(该依赖包含在eureka-client依赖中)<dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-ribbon</artifactId></dependency>2、在RestTemp…...
Linux入门篇(二)
Linux前言链接文件符号链接(软链接)硬链接shellshell 的类型shell的父子关系理解外部命令和内建命令外部命令内建命令Linux环境变量PATH环境变量前言 在这一章,我对Linux中有关shell较为深入的理解和环境变量方面知识的一个记录。同时&#x…...
第四部分:特殊用途的句子——第三章:虚拟
虚拟语气 1、什么是虚拟? 虚拟就是非真实。换句话说,这事不是真的,这事不太可能成真,非真实,就是虚拟 2、怎么表示虚拟? 英语是一个典型的形式来补充内容的语言,若要表达虚拟,只…...
Java中如何获取泛型类型信息
文章目录声明侧泛型使用侧泛型获取泛型类型相关方法1. Class类的泛型方法2. Field类的泛型方法3. Method类的泛型方法4. ParameterizedType类获取声明侧的泛型类型信息获取使用侧的泛型类型信息匿名内部类实现获取使用侧的泛型类型根据使用泛型位置的不同可以分为:声…...
【云原生】centos7搭建安装k8s集群 v1.25版本详细教程实战
文章目录前言一. 实验环境二. k8s 的介绍三 . k8s的安装3.1 搭建实验环境3.1.1 硬件层面的要求3.1.2 软件层面环境配置3.2 docker的安装3.2.1 搭建docker3.2.2 部署 cri-dockerd3.3 部署k8s3.3.1 配置添加阿里云的yum源3.3.2 安装kubeadm kubelet kubectl3.3.3 k8s-master节点初…...
c语言指针
指针 指针是存放地址的变量,也可以说指针地址。 对于定义p(这里的话,只是定义,说明p是指针),p作为一个指针去指向存放数据的位置,而p意思是取(p指向的内存位置的数据)&…...
5.33 综合案例2.0 -ESP32拍照上传阿里云OSS
综合案例2.0 - ESP32拍照上传阿里云OSS案例说明连线功能实现1.阿里云平台连接2.OSS对象存储服务3.ESP32-CAM开发环境4.代码ESP32-CAM开发板代码HaaS506开发板代码测试数据转图片方法案例说明 使用ESP32拍照,将照片数据上传阿里云OSS(通过4G网络上传)。 …...
java无重复字符的最长子串
给定一个字符串 s ,请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: s “abcabcbb” 输出: 3 解释: 因为无重复字符的最长子串是 “abc”,所以其长度为 3。 示例 2: 输入: s “bbbbb” 输出: 1 解释: 因为无重复字符的最长子串是 “…...
测试用例设计工作中的应用
1. 等价类划分 常见的软件测试面试题划分等价类: 等价类是指某个输入域的子集合.在该子集合中,各个输入数据对于揭露程序中的错误都是等效的.并合理地假定:测试某等价类的代表值就等于对这一类其它值的测试.因此,可以把全部输入数据合理划分为假设干等价类,在每一个等价类中取一…...
leetcode 困难 —— 数字 1 的个数(简单逻辑题)
(害,做题是真的慢,这面试给我这题我估计就傻了) 题目: 给定一个整数 n,计算所有小于等于 n 的非负整数中数字 1 出现的个数。 题解: 首先看看整数范围 0 < n < 10^9 不能遍历࿰…...
关于JSON
<!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title></title> </head> <body> <script> /* 1、JSON的英文全称:Java…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...
