C++——哈希4|布隆过滤器
目录
布隆过滤器
完整代码
布隆过滤器应用
布隆过滤器的查找
布隆过滤器删除
布隆过滤器优点
布隆过滤器缺陷
布隆过滤器海量数据处理
布隆过滤器
位图只能映射整形,而对于字符串却无能为力。
把字符串用哈希算法转成整形,映射一个位置进行标记
下面就是布隆过滤器设计思路

位图是直接定址法,不存在冲突,而字符串可能转成整形后,会有重合的地方,发生下面这种冲突(误判)。

布隆过滤器存在误判,如这里如果美团不存在,而B站存在,此时美团的位置被B站占据,有可能会误判为美团此时存在。
这种误判不可能完全去掉,但我们可以通过优化降低误判率。
优化方法:让每个值多映射几个位,如美团映射好几个位,就能减少上面误判的概率。理论而言,一个值映射的位越多,误判冲突的概率就越低,但如果映射过多,空间消耗就会增大。
判断某邮箱是否在黑名单中,可用布隆过滤器进行简单的过滤


完整代码
struct HashBKDR
{// BKDRsize_t operator()(const string& key){size_t val = 0;for (auto ch : key){val *= 131;val += ch;}return val;}
};
struct HashAP
{// BKDRsize_t operator()(const string& key){size_t hash = 0;for (size_t i = 0; i < key.size(); i++){if ((i & 1) == 0){hash ^= ((hash << 7) ^ key[i] ^ (hash >> 3));}else{hash ^= (~((hash << 11) ^ key[i] ^ (hash >> 5)));}}return hash;}
};struct HashDJB
{// BKDRsize_t operator()(const string& key){size_t hash = 5381;for (auto ch : key){hash += (hash << 5) + ch;}return hash;}
};//N表示准备要映射N个值
template<size_t N,class K=string,class Hash1=HashBKDR, class Hash2=HashAP, class Hash3=HashDJB>
class BloomFilter
{
public:void Set(const K& key)//一个值对应多个位置{size_t hash1 = Hash1()(key) % (_ratio * N);_bits.set(hash1);size_t hash2 = Hash2()(key) % (_ratio * N);_bits.set(hash2);size_t hash3 = Hash3()(key) % (_ratio * N);_bits.set(hash3);}bool Test(const K& key)//只要有一个位为0,就return false。{size_t hash1 = Hash1()(key) % (_ratio * N);if (!_bits.set(hash1))return false;size_t hash2 = Hash2()(key) % (_ratio * N);if (!_bits.set(hash2))return false;size_t hash3 = Hash3()(key) % (_ratio * N);if (!_bits.set(hash3))return false;return true;//返回真也可能存在误判}
private:const static size_t ratio = 5;//比例bitset<_ratio*N> _bits;
};
void TestBloomFilter1()
{BloomFilter<10> bf;string arr1[] = { "苹果", "西瓜", "阿里", "美团", "苹果", "字节", "西瓜", "苹果", "香蕉", "苹果", "腾讯" };for (auto& str : arr1){bf.Set(str);}for (auto& str : arr1){cout << bf.Test(str) << endl;}cout << endl << endl;string arr2[] = { "苹果111", "西瓜", "阿里2222", "美团", "苹果dadcaddxadx", "字节", "西瓜sSSSX", "苹果 ", "香蕉", "苹果$", "腾讯" };for (auto& str : arr2){cout << str << ":" << bf.Test(str) << endl;}
}
上半部分是进行Set,下半部分是TestSet
测试用例2
void TestBloomFilter2()
{srand(time(0));const size_t N = 100000;BloomFilter<N> bf;cout << sizeof(bf) << endl;std::vector<std::string> v1;std::string url = "https://www.cnblogs.com/-clq/archive/2012/05/31/2528153.html";for (size_t i = 0; i < N; ++i){v1.push_back(url + std::to_string(1234 + i));}for (auto& str : v1){bf.Set(str);}// 相似std::vector<std::string> v2;for (size_t i = 0; i < N; ++i){std::string url = "http://www.cnblogs.com/-clq/archive/2021/05/31/2528153.html";url += std::to_string(rand() + i);v2.push_back(url);}size_t n2 = 0;for (auto& str : v2){if (bf.Test(str)){++n2;}}cout << "相似字符串误判率:" << (double)n2 / (double)N << endl;std::vector<std::string> v3;for (size_t i = 0; i < N; ++i){string url = "zhihu.com";url += std::to_string(rand()+i);v3.push_back(url);}size_t n3 = 0;for (auto& str : v3){if (bf.Test(str)){++n3;}}cout << "不相似字符串误判率:" << (double)n3 / (double)N << endl;
}


这里的比例越大,开的空间越多,误判率就会降低。 对于库中的布隆过滤器,若开的空间过大,会导致栈溢出,我们可以把空间转移到堆上去,以下是转移到堆上的代码
用我们上面自己写的代码就不会栈溢出,因为开的空间很小
template<size_t N,
class K = string, class Hash1 = HashBKDR, class Hash2 = HashAP, class Hash3 = HashDJB>
class BloomFilter
{
public:void Set(const K& key){size_t hash1 = Hash1()(key) % (_ratio*N);//cout << hash1 << endl;_bits->set(hash1);size_t hash2 = Hash2()(key) % (_ratio*N);//cout << hash2 << endl;_bits->set(hash2);size_t hash3 = Hash3()(key) % (_ratio*N);//cout << hash3 << endl;_bits->set(hash3);}bool Test(const K& key){size_t hash1 = Hash1()(key) % (_ratio*N);//cout << hash1 << endl;if (!_bits->test(hash1))return false; // 准确的size_t hash2 = Hash2()(key) % (_ratio*N);//cout << hash2 << endl;if (!_bits->test(hash2))return false; // 准确的size_t hash3 = Hash3()(key) % (_ratio*N);//cout << hash3 << endl;if (!_bits->test(hash3))return false; // 准确的return true; // 可能存在误判}// 能否支持删除->void Reset(const K& key);private:const static size_t _ratio = 5;std::bitset<_ratio*N>* _bits = new std::bitset<_ratio*N>;
};
布隆过滤器应用

布隆过滤器的查找
布隆过滤器的思想是将一个元素用多个哈希函数映射到一个位图中,因此被映射到的位置的比特
位一定为1。所以可以按照以下方式进行查找:分别计算每个哈希值对应的比特位置存储的是否为
零,只要有一个为零,代表该元素一定不在哈希表中,否则可能在哈希表中。
注意:布隆过滤器如果说某个元素不存在时,该元素一定不存在,如果该元素存在时,该元素可
能存在,因为有些哈希函数存在一定的误判。
比如:在布隆过滤器中查找"alibaba"时,假设3个哈希函数计算的哈希值为:1、3、7,刚好和其
他元素的比特位重叠,此时布隆过滤器告诉该元素存在,但实该元素是不存在的。
布隆过滤器删除
布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。
比如:删除上图中"tencent"元素,如果直接将该元素所对应的二进制比特位置0,“baidu”元素也
被删除了,因为这两个元素在多个哈希函数计算出的比特位上刚好有重叠。
一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计
数器(k个哈希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储
空间的代价来增加删除操作。
缺陷:
1. 无法确认元素是否真正在布隆过滤器中
2. 存在计数回绕
布隆过滤器优点
1. 增加和查询元素的时间复杂度为:O(K), (K为哈希函数的个数,一般比较小),与数据量大小无
关
2. 哈希函数相互之间没有关系,方便硬件并行运算
3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势
4. 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势
5. 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能
6. 使用同一组散列函数的布隆过滤器可以进行交、并、差运算
布隆过滤器缺陷
1. 有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再
建立一个白名单,存储可能会误判的数据)
2. 不能获取元素本身
3. 一般情况下不能从布隆过滤器中删除元素
4. 如果采用计数方式删除,可能会存在计数回绕问题
布隆过滤器海量数据处理
1. 给两个文件,分别有100亿个query(字符串),我们只有1G内存,如何找到两个文件交集?分别给出精确算法和近似算法
精确算法:哈希切分
步骤:1.假设每个查询需要30byte空间,100亿个查询需要3000亿byte约等于300G
2.假设俩个文件叫A和B,依次读取文件A中的query(查询),然后转成整形并取模,这个query就进入编号为Ai的小文件

之后开始找交集,对编号相同的找交集

为什么要对应相同编号找交集?
相同的query,一定进入了相同编号的小文件,因为是同哈希函数转出来的然后对这个值取模,一系列操作都一样,只不过是放到了不同的文件中,虽然文件不同但编号相同。

近似算法:把一个文件放到布隆过滤器里面,再通过另一个文件来看数据在不在,在就是交集,不在则不是。
2. 如何扩展BloomFilter使得它支持删除元素的操作
布隆过滤器一般不支持删除,如果有共同映射的地方,则会影响其它值。我们在这里可以使用引用计数,用多个位表示一个位置,做计数就可以支持删除,但是布隆为了支持删除,空间消耗更多,优势就削弱了

删除百度

给一个超过100G大小的log file, log中存着IP地址, 设计算法找到出现次数最多的IP地址?
与上题条件相同,如何找到top K的IP?


相关文章:
C++——哈希4|布隆过滤器
目录 布隆过滤器 完整代码 布隆过滤器应用 布隆过滤器的查找 布隆过滤器删除 布隆过滤器优点 布隆过滤器缺陷 布隆过滤器海量数据处理 布隆过滤器 位图只能映射整形,而对于字符串却无能为力。 把字符串用哈希算法转成整形,映射一个位置进行标…...
python冒号的用法总结
一维数组 1. 单个冒号的情况 1.1 写完整的情况下 单个冒号的情况下,对数组的遍历操作是从前向后操作。如:arr[a:b] ,冒号前的a含义是从a开始遍历,冒号后的b含义是到b截止(不包括b)。 arr [1, 2, 3, 4,…...
面试题整理
面试题整理 一、Java基础 1、Java 语言有哪些特点 简单易学; 面向对象(封装,继承,多态); 平台无关性( Java 虚拟机实现平台无关性); 支持多线程( C 语言…...
C语言深度解剖-关键字(7)
目录 switch case 语句 理解: 补充: 深入理解: default 语句: case语句: 总结: do、while、for 关键字 while for do while 各种死循环方法: while for do while getchar 写在…...
利用JavaScript编写Python内置函数查询工具
最近我开始学习Python编程语言,我发现Python拥有非常丰富的内置函数,可以用来实现各种不同的功能。但是每当我需要查找一个内置函数时,我总是需要联网使用搜索引擎进行查询。这种方式不仅费时费力,而且需要联网,很不方…...
【MySQL进阶】SQL优化
😊😊作者简介😊😊 : 大家好,我是南瓜籽,一个在校大二学生,我将会持续分享Java相关知识。 🎉🎉个人主页🎉🎉 : 南瓜籽的主页…...
最新版海豚调度dolphinscheduler-3.1.3配置windows本地开发环境
0 说明 本文基于最新版海豚调度dolphinscheduler-3.1.3配置windows本地开发环境,并在windows本地进行调试和开发 1 准备 1.1 安装mysql 可以指定为windows本地mysql,也可以指定为其他环境mysql,若指定为其他环境mysql则可跳过此步。 我这…...
csv文件完整操作总结
csv文件完整操作总结 1.概述 csv 模块主要用于处理从电子数据表格Excel或数据库中导入到文本文件的数据,通常简称为 comma-separated value (CSV)格式因为逗号用于分离每条记录的各个字段。 2.读写操作 2.1.测试数据 创建一个test.csv文…...
时间序列预测--基于CNN的股价预测(Matlab代码实现)
目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨💻4 Matlab代码 💥1 概述 时间序列预测有很多方法,如传统的时序建模方法ARIMA、周期因子法、深度学习网络等,本次实验采用最简单的…...
Dubbo与Spring Cloud优缺点分析(文档学习个人理解)
文章目录核心部件1、总体框架1.1 Dubbo 核心部件如下1.2 Spring Cloud 总体架构2、微服务架构核心要素3、通讯协议3.1 Dubbo3.2 Spring Cloud3.3 性能比较4、服务依赖方式4.1 Dubbo4.2 Spring Cloud5、组件运行流程5.1 Dubbo5.2 Dubbo 运行组件5.3 Spring Cloud5.4 Spring Clou…...
单元测试工具——JUnit的使用
⭐️前言⭐️ 本篇文章主要介绍单元测试工具JUnit的使用。 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主将持续更新学习记录收获,友友们有任何问题可以在评论区留言 🍉博客中涉及源码…...
Linux_基本权限
Linux入门第二篇已送达! Linux_基本权限shell外壳权限Linux的用户分类角色划分Linux的文件文件类型查看权限目录的权限默认权限粘滞位shell外壳 为了保护操作系统,用户的指令不能由操作系统直接进行执行,需要一个中间者,比如Linu…...
3、JavaScript面试题
1, Js数据类型有哪些?数值、字符串、布尔、undefined、null、数组、对象、函数2, 引用类型和值类型的区别- 值类型存在于栈中, 存取速度快 引用类型存在于堆,存取速度慢- 值类型复制的是值本身 引用类型复制的是指向对象的指针- 值类型结构简单只包含基本数据, 引用…...
YUV图像
YUV的存储方式UV格式有两大类:planar和packed。对于planar的YUV格式,先连续存储所有像素点的Y,紧接着存储所有像素点的U,随后是所有像素点的V。对于packed的YUV格式,每个像素点的Y,U,V是连续交替存储的。YUV的采样主流…...
.net6API使用AutoMapper和DTO
AutoMapper,是一个转换工具,说到AutoMapper时,就不得不先说DTO,它叫做数据传输对象(Data Transfer Object)。 通俗的来说,DTO就是前端界面需要用的数据结构和类型,而我们经常使用的数据实体,是数…...
IO知识整理
IO 面向系统IO page cache 程序虚拟内存到物理内存的转换依靠cpu中的mmu映射 物理内存以page(4k)为单位做分配 多个程序访问磁盘上同一个文件,步骤 kernel将文件内容加载到pagecache多个程序读取同一份文件指向的同一个pagecache多个程…...
【正点原子FPGA连载】第十三章QSPI Flash读写测试实验 摘自【正点原子】DFZU2EG_4EV MPSoC之嵌入式Vitis开发指南
1)实验平台:正点原子MPSoC开发板 2)平台购买地址:https://detail.tmall.com/item.htm?id692450874670 3)全套实验源码手册视频下载地址: http://www.openedv.com/thread-340252-1-1.html 第十三章QSPI Fl…...
深入理解mysql的内核查询成本计算
MySql系列整体栏目 内容链接地址【一】深入理解mysql索引本质https://blog.csdn.net/zhenghuishengq/article/details/121027025【二】深入理解mysql索引优化以及explain关键字https://blog.csdn.net/zhenghuishengq/article/details/124552080【三】深入理解mysql的索引分类&a…...
LeetCode 141. 环形链表
原题链接 难度:easy\color{Green}{easy}easy 题目描述 给你一个链表的头节点 headheadhead ,判断链表中是否有环。 如果链表中有某个节点,可以通过连续跟踪 nextnextnext 指针再次到达,则链表中存在环。 为了表示给定链表中的…...
git提交
文章目录关于数据库:桌面/vue-admin/vue_shop_api 的 git 输入 打开 phpStudy ->mySQL管理器 导入文件同时输入密码,和文件名 node app.js 错误区: $ git branch // git branch 查看分支 只有一个main分支不见master解决: gi…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章 摘要: 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言,受限于 C 语言本身的内存安全和并发安全问题,开发复杂模块极易引入难以…...
