DAY 68 redis高可用的主从复制、哨兵、cluster集群
Redis 高可用
什么是高可用
在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。
但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等
Redis的高可用技术
在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和cluster集群,下面分别说明它们的作用,以及解决了什么样的问题
-
持久化: 持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
-
主从复制: 主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份(和同步),以及对于读操作的负载均衡和简单的故障恢复。
- 缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
-
哨兵: 在主从复制的基础上,哨兵实现了自动化的故障恢复。(主挂了,找一个从成为新的主,哨兵节点进行监控)
- 缺陷:写操作无法负载均衡;存储能力受到单机的限制。
-
Cluster集群: 通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。(6台起步,成双成对,3主3从)
Redis主从复制
主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(slave);数据的复制是单向的,只能由主节点到从节点。
默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点
主从复制的作用
- 数据冗余: 主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
- 故障恢复: 当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
- 负载均衡: 在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
- 高可用基石: 除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

主从复制流程
(1)若启动一个slave机器进程,则它会向Master机器发送一个sync command命令,请求同步连接。
(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中.
(3)后台进程完成缓存操作之后,Master机器就会向slave机器发送数据文件,slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给slave端机器。若slave出现故障导致宕机,则恢复正常后会自动重新连接。
(4)Master机器收到slave端机器的连接后,将其完整的数据文件发送给slave端机器,如果Mater同时收到多个slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的slave端机器,确保所有的slave端机器都正常
搭建Redis主从复制
实验环境:
| 主从 | 虚机 | IP地址 |
|---|---|---|
| master | centos7-1 | 192.168.137.10 |
| slave1 | centos7-2 | 192.168.137.20 |
实验步骤
所有节点安装Redis
#关闭防火墙
systemctl stop firewalld
setenforce 0
#安装环境依赖包,下载编译工具
yum install -y gcc gcc-c++ make
#上传软件包并解压
cd /opt/
tar zxvf redis-5.0.7.tar.gz -C /opt/
cd /opt/redis-5.0.7/
#开2核编译安装,指定安装路径为/usr/local/redis
make -j2 && make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了Makefile 文件,所以在解压完软件包后,不用先执行./configure 进行配置,可直接执行make与make install命令进行安装。
#执行软件包提供的install_server.sh 脚本文件,设置Redis服务所需要的相关配置文件
cd /opt/redis-5.0.7/utils
./install_server.sh
.......#一直回车
Please select the redis executable path [] /usr/local/redis/bin/redis-server
#这里默认为/usr/local/bin/redis-server,需要手动修改为/usr/local/redis/bin/redis-server,注意要一次性正确输入
---------------------- 虚线内是注释 ----------------------------------------------------Selected config:Port: 6379 #默认侦听端口为6379Config file: /etc/redis/6379.conf #配置文件路径Log file: /var/log/redis_6379.log #日志文件路径Data dir : /var/lib/redis/6379 #数据文件路径Executable: /usr/local/redis/bin/redis-server #可执行文件路径Cli Executable : /usr/local/bin/redis-cli #客户端命令工具-----------------------------------------------------------------------------------
#当install_server.sh 脚本运行完毕,Redis 服务就已经启动,默认监听端口为6379
netstat -natp | grep redis
#把redis的可执行程序文件放入路径环境变量的目录中,便于系统识别
ln -s /usr/local/redis/bin/* /usr/local/bin/
#Redis服务控制
/etc/init.d/redis_6379 stop #停止
/etc/init.d/redis_6379 start #启动
/etc/init.d/redis_6379 restart #重启
/etc/init.d/redis_6379 status #查看状态
修改master节点的配置文件
vim /etc/redis/6379.conf bind 0.0.0.0 #70行,修改监听地址为0.0.0.0(生产环境中需要填写物理网卡的IP)daemonize yes #137行,开启守护进程,后台启动 logfile /var/log/redis_6379.log #172行,指定日志文件存放目录dir /var/lib/redis/6379 #264行,指定工作目录appendonly yes #700行,开启AOF持久化功能
/etc/init.d/redis_6379 restart #重启redis服务

修改slave节点的配置文件
#修改slave1的配置文件
vim /etc/redis/6379.conf bind 0.0.0.0 #70行,修改监听地址为0.0.0.0(生产环境中需要填写物理网卡的IP)daemonize yes #137行,开启守护进程,后台启动logfile /var/log/redis_6379.log #172行,指定日志文件目录dir /var/lib/redis/6379 #264行,指定工作目录replicaof 192.168.137.10 6379 #288行,指定要同步的Master节点的IP和端口appendonly yes #700行,修改为yes,开启AOF持久化功能
/etc/init.d/redis_6379 restart #重启redis
netstat -natp | grep redis #查看主从服务器是否已建立连接

验证主从效果
主节点查看日志,并插入一条数据
[root@192 utils]# tail /var/log/redis_6379.log
8339:M 28 May 2023 16:50:13.198 * Reading RDB base file on AOF loading...
8339:M 28 May 2023 16:50:13.198 * Loading RDB produced by version 7.0.9
8339:M 28 May 2023 16:50:13.198 * RDB age 32 seconds
8339:M 28 May 2023 16:50:13.198 * RDB memory usage when created 0.82 Mb
8339:M 28 May 2023 16:50:13.198 * RDB is base AOF
8339:M 28 May 2023 16:50:13.198 * Done loading RDB, keys loaded: 0, keys expired: 0.
8339:M 28 May 2023 16:50:13.198 * DB loaded from base file appendonly.aof.1.base.rdb: 0.000 seconds
8339:M 28 May 2023 16:50:13.198 * DB loaded from append only file: 0.000 seconds
8339:M 28 May 2023 16:50:13.198 * Opening AOF incr file appendonly.aof.1.incr.aof on server start
8339:M 28 May 2023 16:50:13.198 * Ready to accept connections
[root@192 utils]# redis-cli
127.0.0.1:6379> set name cxk
OK
127.0.0.1:6379> kes *
(error) ERR unknown command 'kes', with args beginning with: '*'
127.0.0.1:6379> keys *
1) "name"
127.0.0.1:6379> get name
"cxk"

从节点查看

Redis哨兵模式
主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。
哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移
哨兵模式的作用
-
监控: 哨兵会不断地检查主节点和从节点是否运作正常。
-
自动故障转移: 当主节点不能正常工作时,哨兵会开始自动故障转移操,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。
-
通知(提醒): 哨兵可以将故障转移的结果发送给客户端

哨兵结构
哨兵节点: 哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
数据节点: 主节点和从节点都是数据节点
故障转移机制1、由哨兵节点定期监控发现主节点是否出现了故障
每个哨兵节点每隔1秒会问主节点、从节点及其它哨兵节点发送一次ping命令做一次心检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。
2、当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。
3、由leader哨兵节点执行故障转移,过程如下:
- 将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
- 若原主节点恢复也变成从节点,并指向新的主节点;
- 通知客户端主节点已经更换。
需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作
主节点的选举
1.过滤掉不健康的(己下线的),没有回复哨兵ping响应的从节点。
2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
3.选择复制偏移量最大,也就是复制最完整的从节点。
哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式
搭建Redis哨兵模式
实验环境:
| 节点 | 虚机 | IP地址 |
|---|---|---|
| master | centos7-1 | 192.168.137.10 |
| slave1 | centos7-2 | 192.168.137.15 |
| slave2 | centos7-3 | 192.168.137.20 |
| Sentinel-1 | centos7-4 | 192.168.137.30 |
| Sentinel-2 | centos7-5 | 192.168.137.40 |
| Sentinel-3 | centos7-6 | 192.168.137.50 |
生产环境中使用对应数量节点的服务器作为哨兵节点,实验环境中如果电脑性能不够可以把哨兵搭建在原虚机上
实验步骤
所有节点安装Redis
master和slave部署Redis主从复制
修改Sentinel-1的配置文件,之后scp传给另外2个哨兵节点
vim /opt/redis-5.0.7/sentinel.conf
......
protected-mode no #17行,取消注释,关闭保护模式
port 26379 #21行,Redis哨兵默认的监听端口
daemonize yes #26行,指定sentinel为后台启动
logfile "/var/log/sentinel.log" #36行,指定日志文件存放路径
dir "/var/lib/redis/6379" #65行,指定数据库存放路径
sentinel monitor mymaster 192.168.137.10 6379 2 #84行,修改
#指定该哨兵节点监控192.168.121.10:6379这个主节点,该主节点的名称是mymaster。
#最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
sentinel down-after-milliseconds mymaster 3000 #113行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000 #146行,同一个sentinel对同一个master两次failover之间的间隔时间(180秒)
#传给两外2个哨兵节点
scp /opt/redis-5.0.7/sentinel.conf 192.168.137.40:/opt/redis-5.0.7/
scp /opt/redis-5.0.7/sentinel.conf 192.168.137.50:/opt/redis-5.0.7/
启动哨兵模式(所有哨兵节点操作)
#启动三台哨兵
cd /opt/redis-5.0.7/
redis-sentinel sentinel.conf &
查看哨兵信息
#在哨兵节点查看
[root@localhost ~]# redis-cli -p 26379 info Sentinel
# Sentinel
sentinel_masters:1 #一台主节点
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.137.10:6379,slaves=2,sentinels=3
#可以看到主节点地址,2台从节点,3台哨兵
模拟故障
#在Master 上查看redis-server进程号:
[root@localhost ~]# ps -ef | grep redis
root 71245 1 0 6月19 ? 00:00:05 /usr/local/redis/bin/redis-server 0.0.0.0:6379
root 71983 66681 0 00:59 pts/1 00:00:00 grep --color=auto redis
#杀死 Master 节点上redis-server的进程号
[root@localhost ~]# kill -9 71245 #Master节点上redis-server的进程号
[root@localhost ~]# netstat -natp | grep redis
#在哨兵上查看日志,验证master是否切换至从服务器
[root@localhost redis-5.0.7]# tail -f /var/log/sentinel.log
7084:X 20 Jun 2022 00:46:58.869 * +sentinel sentinel ce975c271f86d8f6e0b80162529752b754ecfc69 192.168.137.40 26379 @ mymaster 192.168.137.10 6379
7084:X 20 Jun 2022 00:47:56.595 * +sentinel sentinel d59ba9daf957b704715feeee3c53bd1bf8b3a5d8 192.168.137.50 26379 @ mymaster 192.168.137.10 6379
7084:X 20 Jun 2022 01:01:33.484 # +sdown master mymaster 192.168.137.10 6379
7084:X 20 Jun 2022 01:01:33.561 # +new-epoch 1
7084:X 20 Jun 2022 01:01:33.561 # +vote-for-leader ce975c271f86d8f6e0b80162529752b754ecfc69 1
7084:X 20 Jun 2022 01:01:34.476 # +config-update-from sentinel ce975c271f86d8f6e0b80162529752b754ecfc69 192.168.137.40 26379 @ mymaster 192.168.137.10 6379
7084:X 20 Jun 2022 01:01:34.476 # +switch-master mymaster 192.168.137.10 6379 192.168.121.30 6379
7084:X 20 Jun 2022 01:01:34.477 * +slave slave 192.168.137.15:6379 192.168.137.15 6379 @ mymaster 192.168.121.30 6379
7084:X 20 Jun 2022 01:01:34.477 * +slave slave 192.168.137.10:6379 192.168.137.10 6379 @ mymaster 192.168.121.30 6379
7084:X 20 Jun 2022 01:02:04.493 # +sdown slave 192.168.137.10:6379 192.168.137.10 6379 @ mymaster 192.168.137.20 6379
#在哨兵上查看主节点是否切换成功
[root@localhost ~]# redis-cli -p 26379 info Sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.137.20:6379,slaves=2,sentinels=3
Redis 集群模式
集群,即Redis Cluster,是Redis3.0开始引入的分布式存储方案。
集群由多个节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制
集群的作用
(1)数据分区: 数据分区(或称数据分片)是集群最核心的功能。
- 集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
- Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。
(2)高可用: 集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。
通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。
Redis集群的数据分片
Redis集群引入了哈希槽的概念。
Redis集群有16384个哈希槽(编号0-16383)。
集群的每个节点负责一部分哈希槽。
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作
集群模式的主从复制模型
- 集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
- 为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为主节点继续服务。当B和B1都失败后,集群将不可用
搭建 Redis 集群
实验步骤:
所有节点安装Redis
开启集群功能
cd /opt/redis-5.0.7/
vim redis.conf
......
bind 192.168.137.10 #69行,修改为监听自己的物理网卡IP
protected-mode no #88行,修改为no,关闭保护模式
port 6379 #92行,redis默认监听端口
daemonize yes #136行,开启守护进程,以独立进程启动
appendonly yes #700行,修改为yes,开启AOF持久化
cluster-enabled yes #832行,取消注释,开启群集功能
cluster-config-file nodes-6379.conf #840行,取消注释,群集名称文件设置
cluster-node-timeout 15000 #846行,取消注释,群集超时时间设置
#将文件传给另外5个节点,之后每个节点要修改监听地址为自己的IP
[root@localhost redis-5.0.7]# scp redis.conf 192.168.137.15:`pwd`
[root@localhost redis-5.0.7]# scp redis.conf 192.168.137.20:`pwd`
[root@localhost redis-5.0.7]# scp redis.conf 192.168.137.30:`pwd`
[root@localhost redis-5.0.7]# scp redis.conf 192.168.137.40:`pwd`
[root@localhost redis-5.0.7]# scp redis.conf 192.168.137.50:`pwd`
所有节点启动redis服务
cd /opt/redis-5.0.7/
redis-server redis.conf #启动redis节点
启动集群
在任意一个节点启动集群即可。
redis-cli --cluster create 192.168.137.10:6379 192.168.137.15:6379 192.168.137.20:6379 192.168.137.30:6379 192.168.137.40:6379 192.168.137.50:6379 --cluster-replicas 1
#六个主机分为三组,三主三从,前面的做主节点后面的做从节点下免交互的时候需要输入yes才可以创建 "-replicas 1"表示每个主节点有一个从节点
#前三台为Master,后三台为Slave
测试集群
#加-c参数,节点之间就可以互相跳转
redis-cli -h 192.168.137.10 -p 6379 -c
#查看节点的哈希槽编号范围
cluster slots
#赋值
set name yuji
#查看键的哈希槽编号
cluster keyslot 键名
[root@mas ~]# redis-cli -h 192.168.137.10 -p 6379 -c
192.168.121.10:6379> cluster slots #查看节点的哈希槽编号范围
1) 1) (integer) 10923 #第一对主从的哈希槽编号范围2) (integer) 163833) 1) "192.168.137.15" #主节点2) (integer) 63793) "5f117a3e204d1d6f6dc924ad8b39034a8e9f3261"4) 1) "192.168.137.30" #从节点2) (integer) 63793) "4a05a086eec06fa4da58b15512d1c81184bc5ee5"
2) 1) (integer) 5461 #第二对主从的哈希槽编号范围2) (integer) 109223) 1) "192.168.121.20" #主节点2) (integer) 63793) "3008bba29dfbf342bc448ba3062b0a331c8d009e"4) 1) "192.168.137.50" #从节点2) (integer) 63793) "ee61a4709d6420bb540b2c28218fdd2dfe358b7a"
3) 1) (integer) 0 #第三对主从的哈希槽编号范围2) (integer) 54603) 1) "192.168.137.10" #主节点2) (integer) 63793) "d1ddb554b3edaebefa6672b2f1f8171393e1f7f3"4) 1) "192.168.137.40" #从节点 2) (integer) 63793) "71e1f705ce01ca31ab16fa3cf07d7e6cbfab5978"
192.168.121.10:6379>
#在10节点新建name键,会自动跳转到20节点进行存放
192.168.121.10:6379> set name yuji
-> Redirected to slot [5798] located at 192.168.137.15:6379
OK
192.168.121.20:6379> cluster keyslot name #查看name键的哈希槽编号
(integer) 5798
192.168.121.20:6379> quit #退出数据库
[root@mas ~]# redis-cli -h 192.168.137.10 -p 6379 -c #重新登录10节点
192.168.121.10:6379> keys * #10节点中没有name键
(empty list or set)
192.168.121.10:6379> get name #查看name键的值,会根据键的哈希槽编号自动跳转到20节点进行获取
-> Redirected to slot [5798] located at 192.168.137.15:6379
"yuji"
192.168.121.20:6379> #已跳转到20节点
相关文章:
DAY 68 redis高可用的主从复制、哨兵、cluster集群
Redis 高可用 什么是高可用 在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。 但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服…...
leetcode 1209 学会删除字符串
删除字符串的经典kotlin操作: val mTemp (temp.text).replace(Regex("℃"),"") 以下是题目! 1209. 删除字符串中的所有相邻重复项 II 提示 中等 174 相关企业 给你一个字符串 s,「k 倍重复项删除操作」将会从 s…...
JavaScript6
一、概念 ES6是JavaScript语言的标准。 新特性:let和const命令、变量的解构赋值、字符串函数对象数组等扩展。 环境准备:需要安装NodeJs。 二、新特性 1、let let命令用来声明变量。他的用法类似var,但所声明的变量,只在let命令…...
轻松安装Redis:不用担心配置问题
一、Centos安装Redis 1.安装 EPEL 源 Redis 不在 CentOS 官方仓库中,需要安装 EPEL 源才能访问到 Redis 软件包。运行以下命令安装 EPEL 源: sudo yum install epel-release 2.安装 Redis 使用以下命令安装 Redis: sudo yum install re…...
ChatGPT学习研究总结
目录 ChatGPT研究总结 一、程序接入用途不大 二、思考:如何构建一个类似ChatGPT的自定义模型 一些ChatGPT研究学习资料(来源网络) (1)一文读懂ChatGPT模型原理 (2)MATLAB科研图像处理——…...
SpringBoot枚举入参实战
文章目录 前言一、什么是枚举?二、枚举的优点三、枚举的缺点四、使用步骤1.代码实现1.1.枚举1.2.实体1.3.控制层 2.Postman测试2.1.Get请求2.1.1.枚举参数2.1.2.对象枚举属性参数 2.2.Post请求2.2.1.枚举参数2.2.2.对象枚举属性参数 2.3.Put请求2.3.1.枚举参数2.3.2…...
Ansible介绍
文章目录 Ansible介绍Ansible的架构为什么要有Ansible TowerAnsible Tower Ansible介绍 Ansible是一种自动化工具,可以用于自动化部署、配置和管理IT基础设施。它是一种基于Python的开源软件,提供了一个简单易用的语言和工具集,使得自动化管…...
GPT-4的免费使用方法分享
目录 方法1:使用Ora.sh的LLM应用 方法2:使用https://steamship.com 方法3:使用https://nat.dev 方法4:http://tdchat.vip 方法5:使用Poe网站或App 方法6:使用 Opencat App 方法7:使用https://Huggin…...
一个产品的诞生
一个产品的诞生 一个产品的诞生通常需要经历多个阶段,包括市场调研、产品设计、原型制作、测试和生产等。在市场调研阶段,公司会了解消费者的需求和市场趋势,以确定产品的定位和特点。在产品设计阶段,设计师会根据市场调研结果和…...
MQTT与传统的HTTP协议对比,优势在哪里呢?
HTTP是应用最为广泛和流行的协议。但是MQTT在过去的几年里迅速取得了进展。在讨论物联网开发的时候,开发者必须在这两者之间作出选择。 MQTT集中于数据,而HTTP集中于文档。HTTP是一个用于客户端-服务器计算的请求-响应协议,它并非总是为移动设…...
热榜!阿里出品2023版Java架构师面试指南,涵盖Java所有核心技能
最近很多粉丝朋友私信我说:熬过了去年的寒冬却没熬过现在的内卷;打开Boss直拒一排已读不回,回的基本都是外包,薪资还给的不高,对技术水平要求也远超从前;感觉Java一个初中级岗位有上千人同时竞争࿰…...
【小程序】封装时间选择组件:用单元格van-cell和插槽slot,包括起始时间和终止时间
效果 可以选择起始时间和终止时间,并显示。 时间选择器放在van-cell的value插槽中。 用的库: https://vant-contrib.gitee.io/vant-weapp/#/home https://dayjs.fenxianglu.cn/category/ 用的组件:Cell单元格、DatetimePicker时间选择、Pop…...
华为OD机试真题B卷 Java 实现【猜密码】
一、题目描述 小杨申请了一个保密柜,但是他忘记了密码。只记得密码都是数字,而且所有数字都是不重复的。 请你根据他记住的数字范围和密码的最小数字数量,帮他算下有哪些可能的组合,规则如下: 输出的组合都是从可选的数字范围中选取的,且不能重复;输出的密码数字要按照…...
沉淀-MYSQL
MYSQL学习 数据库操作 创建数据库 create database db_name; 删除数据库 drop database db_name; 选择/使用数据库 use db_name; 使用mysqladmin在终端执行 创建数据库 mysqladmin -u root -p create db_name Enter password:*** 删除数据库 mysqladmin -u root -p drop db…...
OJ练习第116题——二进制矩阵中的最短路径(BFS)
二进制矩阵中的最短路径 力扣链接:1091. 二进制矩阵中的最短路径 题目描述 给你一个 n x n 的二进制矩阵 grid 中,返回矩阵中最短 畅通路径 的长度。如果不存在这样的路径,返回 -1 。 二进制矩阵中的 畅通路径 是一条从 左上角 单元格&am…...
2023上半年软件设计师真题评析
2023年上半年软设是2018年改版后的一次考试,以下内容根据考完回忆结合网上暂时流传的真题(不保证完全正确)整理,主要侧重相关知识点罗列,少讲或不讲具体的答案,主要给自己的计算机基础查漏补缺,同时也希望对大家有帮助…...
(汇编) 基于VS的x86汇编基础指令
文章目录 环境汇编基础标志位常用指令 vs配置END 环境 visual studio 选择x86运行 示例代码 /** | 32位 | 16位 | 高8位 | 低8位 | | ---- | ---- | ----- | ----- | | EAX | AX | AH | AL |*/ #include <iostream>int main() {int32_t x 1;int32_t y 2;//…...
算法Day16 | 104.二叉树的最大深度,559.n叉树的最大深度, 111.二叉树的最小深度,222.完全二叉树的节点个数
Day16 104.二叉树的最大深度559.n叉树的最大深度111.二叉树的最小深度222.完全二叉树的节点个数 104.二叉树的最大深度 题目链接: 104.二叉树的最大深度 深度和高度相反。 高度,自然是从下向上数:叶子节点是第一层,往上数&#x…...
java设计模式之责任链设计模式的前世今生
责任链设计模式是什么? 责任链设计模式(Chain of Responsibility Pattern)是一种行为型设计模式,它允许多个对象都有机会处理请求,从而避免请求的发送者与接收者之间的耦合关系。在责任链模式中,每个处理对…...
是面试官放水,还是公司太缺人了?华为原来这么容易就进了...
华为是大企业,是不是很难进去啊?” “在华为做软件测试,能得到很好的发展吗? 一进去就有9.5K,其实也没有想的那么难” 直到现在,心情都还是无比激动! 本人211非科班,之前在字节和腾…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
