当前位置: 首页 > news >正文

ChatGPT学习研究总结

目录

ChatGPT研究总结

一、程序接入用途不大

二、思考:如何构建一个类似ChatGPT的自定义模型

一些ChatGPT研究学习资料(来源网络)

(1)一文读懂ChatGPT模型原理

(2)MATLAB科研图像处理——基于ChatGPT编程

(3)ChatGPT发展历程、原理、技术架构详解和产业未来 (收录于先进AI技术深度解读)

(4)程序员浅用ChatGPT:替代还很远

(5)用ChatGPT 做硬件设计?

(6)chatGPT 的 49 种应用场景介绍,各开发语言接入 chatGPT 参考指南


ChatGPT研究总结

ChatGPT是一种由OpenAI训练的大型语言模型,它可以生成人类语言文本。在编写小段代码、书写描述功能介绍等等方面有一定的帮助,但因为工具本来存在一些错误现象,所以还需要人工审核,用其精华。同时,使用过程中还需注意对结果中可能存在的版权风险。

目前ChatGPT使用中主要存在如下问题:

  1. 慢:因为计算量巨大,速度较慢,通常一个问题需要几分钟才有答案
  2. 错:因为只是文本语言模型分析,存在回答结果错误现象
  3. 广度待提升:模型训练的领域广度还待提升

一、程序接入用途不大

程序接入的用途不大,因为通过sdk只是封装出一个软件界面,核心的计算代码还是部署在服务器上的训练代码,而目前通过微信公众号(ChatChatGPT)等接口输入也能达到使用ChatGPT,所以没有必要来接入程序,做一个“软件壳”,作用不大。

二、思考:如何构建一个类似ChatGPT的自定义模型

例如,能否构建一个压裂监测模型,根据监测的电磁信号来推测压裂缝隙的走向?

关于这个问题,先总监一下 ChatGPT 模型构建中的几个关键点:

1、大数据训练:

  1. 基于2021年所拥有的数据集,预训练数据量可能超过百T级,非常巨大
  2. ChatGPT参数量达到了1750亿,模型设定的参数非常多

2、人工对结果标注
ChatGPT进行了人工标反馈和奖励,以辅助人工智能程序不断优化(进化)

3、训练费用

“GPT-3 模型训练一次需要花费 460 万美元”

见附录:《chatGPT 的 49 种应用场景介绍,各开发语言接入 chatGPT 参考指南》一文。

综合这几点,我们可以构建出一个预测压裂监测缝隙的模型,但前提是有足够的数据,也需要人工来验证相应数据的结果,提供充足的资金,来进行模型训练。

一些ChatGPT研究学习资料(来源网络)

(1)一文读懂ChatGPT模型原理

一文读懂ChatGPT模型原理

一文读懂ChatGPT模型原理 - 知乎

不光是做人工智能、机器学习的人关注,而是大量的各行各业从业人员都来关注这个模型,真可谓空前盛世。
所谓语言模型的训练和学习,就是从大量的数据中学习复杂的上下文联系。

与此同时,OpenAI 早于 Bert 出品了一个初代 GPT 模型。

在 NLP 领域,人们使用语言一般包括三个步骤:
接受听到或读到的语言 -> 大脑理解 -> 输出要说的语言。

GPT-3 的模型所采用的数据量之大,高达上万亿,模型参数量也十分巨大,上千亿,学习之复杂,计算之繁复,
如此巨大的模型造就了 GPT-3 在许多十分困难的 NLP 任务,诸如撰写人类难以判别的文章,甚至编写SQL查询语句,React或者JavaScript代码上优异的表现。

ChatGPT 模型上基本上和之前 GPT-3 都没有太大变化,主要变化的是训练策略变了,用上了强化学习。
几年前,alpha GO 击败了柯洁,几乎可以说明,强化学习如果在适合的条件下,完全可以打败人类,逼近完美的极限。
强化学习非常像生物进化,模型在给定的环境中,不断地根据环境的惩罚和奖励(reward),拟合到一个最适应环境的状态。

这里重点是第二步中,如何构建一个 reward 函数,在alpha go 里,这个reward 函数就是下完一盘围棋之后判断谁输谁赢,只需要一个程序函数即可完成。
而在ChatGPT里,具体就是让那40名外包人员不断地从模型的输出结果中筛选,判断哪些句子是好的,哪些是低质量的,这样就可以训练得到一个 reward 模型。

一个语言文字训练的人工智能程序

存在问题:

  1. 仅限于语言标注
  2. 仅限于以前输入到系统中,训练的数据库,如果有新的数据还需要重新添加并训练
  3. 存在编程过程中,答案正确率较低的现象

(2)MATLAB科研图像处理——基于ChatGPT编程

MATLAB科研图像处理——基于ChatGPT编程

MATLAB科研图像处理——基于ChatGPT编程 - 知乎

ChatGPT是一个非常强大的语言模型,但它并不是万能的

(3)ChatGPT发展历程、原理、技术架构详解和产业未来 (收录于先进AI技术深度解读)

ChatGPT发展历程、原理、技术架构详解和产业未来 (收录于先进AI技术深度解读)

ChatGPT发展历程、原理、技术架构详解和产业未来 (收录于GPT-4/ChatGPT技术与产业分析) - 知乎

ChatGPT 是一种专注于对话生成的语言模型。它能够根据用户的文本输入,产生相应的智能回答。这个回答可以是简短的词语,也可以是长篇大论。
其中GPT是Generative Pre-trained Transformer(生成型预训练变换模型)的缩写。

目标是开发造福全人类的AI技术。

每一代GPT模型的参数量都爆炸式增长,堪称“越大越好”。2019年2月发布的GPT-2参数量为15亿,而2020年5月的GPT-3,参数量达到了1750亿。

ChatGPT 是基于GPT-3.5(Generative Pre-trained Transformer 3.5)架构开发的对话AI模型,是InstructGPT 的兄弟模型。ChatGPT很可能是OpenAI 在GPT-4 正式推出之前的演练,或用于收集大量对话数据。

因此它只能基于2021年所拥有的数据集进行回答
ChatGPT 通过算法屏蔽,减少有害和欺骗性的训练输入。

(4)程序员浅用ChatGPT:替代还很远

程序员浅用ChatGPT:替代还很远

程序员浅用ChatGPT:替代还很远|源代码|应用程序|编程语言_网易订阅

李智认为,ChatGPT并不能编写程序员角度的代码,而是从互联网收集庞大信息库并使用它来生成代码,解决问题还是要靠人。
对于软件程序,ChatGPT目前只有通用底层的能力,涉及电商、云服务等业务层面的能力尚有欠缺。比如要写一个小程序,是可以借用ChatGPT来找算法、写代码、写脚本

考虑到会侵犯知识产权。

(5)用ChatGPT 做硬件设计?

用ChatGPT 做硬件设计?

用ChatGPT 做硬件设计? - 知乎

(6)chatGPT 的 49 种应用场景介绍,各开发语言接入 chatGPT 参考指南

chatGPT 的 49 种应用场景介绍,各开发语言接入 chatGPT 参考指南

chatGPT的49种应用场景介绍,各开发语言接入chatGPT参考指南_Java_非喵鱼_InfoQ写作社区

分析了存在的问题:

  1. 广度待提升

api 注册使用流程
直接用 chatGPT 去创建一个程序要用的秘钥,
就可以使用 http 接口调用了。

程序接入到 chatGPT,所调用的接口,都是收费接口,不过还好的是每一个新注册的账号头 3 个月免费使用,总消费额度不超过 18 美元即可。另外下图 4 个方块就是 nlp 的模型,左边 ada 速度最快,右边达芬奇功能最强大。

转载于:杨杰

相关文章:

ChatGPT学习研究总结

目录 ChatGPT研究总结 一、程序接入用途不大 二、思考:如何构建一个类似ChatGPT的自定义模型 一些ChatGPT研究学习资料(来源网络) (1)一文读懂ChatGPT模型原理 (2)MATLAB科研图像处理——…...

SpringBoot枚举入参实战

文章目录 前言一、什么是枚举?二、枚举的优点三、枚举的缺点四、使用步骤1.代码实现1.1.枚举1.2.实体1.3.控制层 2.Postman测试2.1.Get请求2.1.1.枚举参数2.1.2.对象枚举属性参数 2.2.Post请求2.2.1.枚举参数2.2.2.对象枚举属性参数 2.3.Put请求2.3.1.枚举参数2.3.2…...

Ansible介绍

文章目录 Ansible介绍Ansible的架构为什么要有Ansible TowerAnsible Tower Ansible介绍 Ansible是一种自动化工具,可以用于自动化部署、配置和管理IT基础设施。它是一种基于Python的开源软件,提供了一个简单易用的语言和工具集,使得自动化管…...

GPT-4的免费使用方法分享

目录 方法1:使用Ora.sh的LLM应用 方法2:使用https://steamship.com 方法3:使用https://nat.dev 方法4:http://tdchat.vip 方法5:使用Poe网站或App 方法6:使用 Opencat App 方法7:使用https://Huggin…...

一个产品的诞生

一个产品的诞生 一个产品的诞生通常需要经历多个阶段,包括市场调研、产品设计、原型制作、测试和生产等。在市场调研阶段,公司会了解消费者的需求和市场趋势,以确定产品的定位和特点。在产品设计阶段,设计师会根据市场调研结果和…...

MQTT与传统的HTTP协议对比,优势在哪里呢?

HTTP是应用最为广泛和流行的协议。但是MQTT在过去的几年里迅速取得了进展。在讨论物联网开发的时候,开发者必须在这两者之间作出选择。 MQTT集中于数据,而HTTP集中于文档。HTTP是一个用于客户端-服务器计算的请求-响应协议,它并非总是为移动设…...

热榜!阿里出品2023版Java架构师面试指南,涵盖Java所有核心技能

最近很多粉丝朋友私信我说:熬过了去年的寒冬却没熬过现在的内卷;打开Boss直拒一排已读不回,回的基本都是外包,薪资还给的不高,对技术水平要求也远超从前;感觉Java一个初中级岗位有上千人同时竞争&#xff0…...

【小程序】封装时间选择组件:用单元格van-cell和插槽slot,包括起始时间和终止时间

效果 可以选择起始时间和终止时间,并显示。 时间选择器放在van-cell的value插槽中。 用的库: https://vant-contrib.gitee.io/vant-weapp/#/home https://dayjs.fenxianglu.cn/category/ 用的组件:Cell单元格、DatetimePicker时间选择、Pop…...

华为OD机试真题B卷 Java 实现【猜密码】

一、题目描述 小杨申请了一个保密柜,但是他忘记了密码。只记得密码都是数字,而且所有数字都是不重复的。 请你根据他记住的数字范围和密码的最小数字数量,帮他算下有哪些可能的组合,规则如下: 输出的组合都是从可选的数字范围中选取的,且不能重复;输出的密码数字要按照…...

沉淀-MYSQL

MYSQL学习 数据库操作 创建数据库 create database db_name; 删除数据库 drop database db_name; 选择/使用数据库 use db_name; 使用mysqladmin在终端执行 创建数据库 mysqladmin -u root -p create db_name Enter password:*** 删除数据库 mysqladmin -u root -p drop db…...

OJ练习第116题——二进制矩阵中的最短路径(BFS)

二进制矩阵中的最短路径 力扣链接:1091. 二进制矩阵中的最短路径 题目描述 给你一个 n x n 的二进制矩阵 grid 中,返回矩阵中最短 畅通路径 的长度。如果不存在这样的路径,返回 -1 。 二进制矩阵中的 畅通路径 是一条从 左上角 单元格&am…...

2023上半年软件设计师真题评析

2023年上半年软设是2018年改版后的一次考试,以下内容根据考完回忆结合网上暂时流传的真题(不保证完全正确)整理,主要侧重相关知识点罗列,少讲或不讲具体的答案,主要给自己的计算机基础查漏补缺,同时也希望对大家有帮助…...

(汇编) 基于VS的x86汇编基础指令

文章目录 环境汇编基础标志位常用指令 vs配置END 环境 visual studio 选择x86运行 示例代码 /** | 32位 | 16位 | 高8位 | 低8位 | | ---- | ---- | ----- | ----- | | EAX | AX | AH | AL |*/ #include <iostream>int main() {int32_t x 1;int32_t y 2;//…...

算法Day16 | 104.二叉树的最大深度,559.n叉树的最大深度, 111.二叉树的最小深度,222.完全二叉树的节点个数

Day16 104.二叉树的最大深度559.n叉树的最大深度111.二叉树的最小深度222.完全二叉树的节点个数 104.二叉树的最大深度 题目链接&#xff1a; 104.二叉树的最大深度 深度和高度相反。 高度&#xff0c;自然是从下向上数&#xff1a;叶子节点是第一层&#xff0c;往上数&#x…...

java设计模式之责任链设计模式的前世今生

责任链设计模式是什么&#xff1f; 责任链设计模式&#xff08;Chain of Responsibility Pattern&#xff09;是一种行为型设计模式&#xff0c;它允许多个对象都有机会处理请求&#xff0c;从而避免请求的发送者与接收者之间的耦合关系。在责任链模式中&#xff0c;每个处理对…...

是面试官放水,还是公司太缺人了?华为原来这么容易就进了...

华为是大企业&#xff0c;是不是很难进去啊&#xff1f;” “在华为做软件测试&#xff0c;能得到很好的发展吗&#xff1f; 一进去就有9.5K&#xff0c;其实也没有想的那么难” 直到现在&#xff0c;心情都还是无比激动&#xff01; 本人211非科班&#xff0c;之前在字节和腾…...

PLC/DCS系统常见的干扰现象及判断方法

一般来说&#xff0c;常见的干扰现象有以下几种&#xff1a; 1.系统发指令时&#xff0c;电机无规则地转动&#xff1b; 2.信号等于零时&#xff0c;数字显示表数值乱跳; 3。传感器工作时&#xff0c;DCS/PLC 采集过来的信号与实际参数所对应的信号值不吻合&#xff0c;且误…...

c++ 11标准模板(STL) std::map(四)

定义于头文件<map> template< class Key, class T, class Compare std::less<Key>, class Allocator std::allocator<std::pair<const Key, T> > > class map;(1)namespace pmr { template <class Key, class T, clas…...

6.开源非对称加密算法SM2实现

6.开源非对称加密算法SM2实现 前期内容导读&#xff1a; 开源加解密RSA/AES/SHA1/PGP/SM2/SM3/SM4介绍开源AES/SM4/3DES对称加密算法介绍及其实现开源AES/SM4/3DES对称加密算法的验证实现开源非对称加密算法RSA/SM2实现及其应用开源非对称加密算法RSA实现 1. 开源组件 非对称秘…...

Toolformer and Tool Learning(LLMs如何使用工具)

大模型的能力让学术和工业界都对通用人工智能的未来充满幻想&#xff0c;在前一篇博文中已经粗略介绍&#xff0c; Augmented Language Models&#xff08;增强语言模型&#xff09; ALM的两大思路是推理和工具&#xff0c;本篇博文整理两篇关于Toolformer或Tool Learning的论…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...