Tree 底层源码实现(二叉树、递归、迭代)
树(Tree)是一种非线性数据结构,由一组节点和它们之间的边组成。在树中,每个节点都有零个或多个子节点,除了根节点外,每个节点都有且仅有一个父节点。树可以被用于许多应用程序,如文件系统、XML文档、数据库索引和编译器语法树等。
二叉树
Java中的树可以通过节点类(Node Class)来实现,这个类通常包含节点的值、指向子节点的指针以及其他一些属性。
下面是一个示例代码,它实现了一个二叉树(Binary Tree):
class TreeNode {int val;TreeNode left;TreeNode right;TreeNode(int x) { val = x; }
}
在这个示例中,TreeNode类包含一个整数值(val),以及左右子树的指针(left和right)。为了实现不同类型的树,可以在节点类中添加其他属性。
下面是一个示例代码,它实现了一个二叉搜索树(Binary Search Tree):
class BSTNode {int val;BSTNode left;BSTNode right;BSTNode(int x) { val = x; }
}class BinarySearchTree {BSTNode root;public BinarySearchTree() {root = null;}public void insert(int value) {root = insert(root, value);}private BSTNode insert(BSTNode node, int value) {if (node == null) {return new BSTNode(value);}if (value < node.val) {node.left = insert(node.left, value);} else if (value > node.val) {node.right = insert(node.right, value);}return node;}
}
在这个示例中,BinarySearchTree类是一个包含BSTNode节点的根节点的类。insert方法用于将值插入到树中。在这个实现中,如果要插入的值小于节点的值,则将值插入左子树中;如果要插入的值大于节点的值,则将值插入右子树中。如果节点为空,则将新值插入该位置。
递归方法
在Java中,树的实现可以使用递归方法(Recursion)或者迭代方法(Iteration)。下面是一些关于树的递归方法的示例代码:
前序遍历(Preorder Traversal)
public void preOrderTraversal(TreeNode root) {if (root != null) {System.out.print(root.val + " ");preOrderTraversal(root.left);preOrderTraversal(root.right);}
}
中序遍历(Inorder Traversal)
public void inOrderTraversal(TreeNode root) {if (root != null) {inOrderTraversal(root.left);System.out.print(root.val + " ");inOrderTraversal(root.right);}
}
后序遍历(Postorder Traversal)
public void postOrderTraversal(TreeNode root) {if (root != null) {postOrderTraversal(root.left);postOrderTraversal(root.right);System.out.print(root.val + " ");}
}
以上方法都是通过递归实现的,它们在遍历树时将节点的值打印到控制台。在这些示例代码中,如果节点为空,则返回。
迭代方法
除了递归方法之外,Java中还可以使用迭代方法实现树的遍历。下面是一个示例代码,它实现了二叉树的中序遍历(Inorder Traversal):
public List<Integer> inorderTraversal(TreeNode root) {List<Integer> res = new ArrayList<>();Stack<TreeNode> stack = new Stack<>();TreeNode curr = root;while (curr != null || !stack.isEmpty()) {while (curr != null) {stack.push(curr);curr = curr.left;}curr = stack.pop();res.add(curr.val);curr = curr.right;}return res;
}
在这个示例中,我们使用一个栈(Stack)来保存节点。当当前节点不为空时,将其压入栈中,并将当前节点更新为其左子节点。当当前节点为空时,弹出栈顶元素并将其值添加到结果列表中,然后将当前节点更新为其右子节点。通过不断重复这个过程,我们可以得到二叉树的中序遍历。
相关文章:
Tree 底层源码实现(二叉树、递归、迭代)
树(Tree)是一种非线性数据结构,由一组节点和它们之间的边组成。在树中,每个节点都有零个或多个子节点,除了根节点外,每个节点都有且仅有一个父节点。树可以被用于许多应用程序,如文件系统、XML文…...

家政服务小程序实战教程13-接入客服
小程序在微信里使用,以其无需安装随用随走为特点。但是有个问题是,如果提供商品或者服务的,用户如果有问题往往希望平台的运营方给出专业的解答。为了满足这类需求,就需要我们提供客服接入的功能,用户可以点击客服图标…...

大白话高并发(三)
背景 高并发得第三篇,讲一讲压测吧,因为我的目的是模拟100万人同时来秒杀。 是不是真的要找100万个人 没必要 ,你就算100万人掐着表在同一毫秒内把请求请求某一台机器,服务器也不可能在同一时间处理那么多请求,因为…...

vue全家桶(四)前端工程化
vue全家桶(四)前端工程化1.模块化的相关规范1.1模块化概述1.2模块化的分类A.浏览器端的模块化B.服务器端的模块化C.ES6模块化1.2.1 Node.js中通过bable体验ES6模块化1.2.2 ES6模块化的基本语法1.2.2.1 默认导出与默认导入1.2.2.2 按需导出与按需导入1.2.…...
超螺旋滑模控制(STA)
超螺旋滑模控制(Super Twisting Algorithm, STA) 超螺旋滑模控制又称超扭滑模控制,可以说是二阶系统中最好用的滑模控制方法。 系统模型 对于二阶系统可以建立具有标准柯西形式的微分方程组 {x˙1x2x˙2fg⋅u\begin{cases} \dot x_1 x_2 \\ \dot x_2 f g \cdo…...

NX二次开发编译时dll自动数字签名及拷贝
前言 在UG5.0开始,所有基于UG二次开发的DLL都要“签名”后才能被客户端上正版的NX调用。 一、基于C# 开发签名 1、添加资源文件 (1)项目类库上右键–>属性–>资源–>添加资源右边小三角–>添加现有文件–>切换到UG安装目录下…...

教你如何搭建人事OA-薪资管理系统,demo可分享
1、简介1.1、案例简介本文将介绍,如何搭建人事OA-薪资管理。1.2、应用场景根据设置薪资基础及考勤和绩效的数据计算得到各个员工工资详情。2、设置方法2.1、表单搭建1)新建表单【工资表】,字段设置如下;名称类型名称类型人员资料分…...

ChIP-seq 分析:Mapped 数据可视化(4)
1. Mapped reads 现在我们有了 BAM 文件的索引,我们可以使用 idxstatsBam() 函数检索和绘制映射读取的数量。 mappedReads <- idxstatsBam("SR_Myc_Mel_rep1.bam")TotalMapped <- sum(mappedReads[, "mapped"])ggplot(mappedReads, aes(x…...

Jenkins 基于Kubernetes 弹性构建池
流程:创建Jenkins Agent;获取Jenkins Agent的参数;渲染yaml模板;调用K8s API在固定的NS中创建一个Pod;运行Jenkins pipeline到agent;创建Agentimport hudson.model.Node.Mode import hudson.slaves.* impor…...

经典算法题---链表奇偶重排(好题)双指针系列
我听别人说这世界上有一种鸟是没有脚的,它只能够一直的飞呀飞呀,飞累了就在风里面睡觉,这种鸟一辈子只能下地一次,那一次就是它死亡的时候。——《阿甘正传》这一文章讲解链表的奇偶排序问题,这是一道不难但是挺好的链…...

数据仓库实战
目录1、最佳实战1.1 表的分类1.2 ETL策略1.3 任务调度2、项目实战2.1 项目概述2.2 数据描述2.3 架构设计2.4 环境搭建2.5 项目开发1、最佳实战 1.1 表的分类 维度建模中表的类型:事实表和维度表 事实表又可以分为:事务事实表、周期快照事实表、累积快照…...

GPT系列:GPT, GPT-2, GPT-3精简总结 (模型结构+训练范式+实验)
😄 花一个小时快速跟着 人生导师-李沐 过了一遍GPT, GPT-2, GPT-3。下面精简地总结了GPT系列的模型结构训练范式实验。 文章目录1、GPT1.1、模型结构:1.2、范式:预训练 finetune1.3、实验部分:2、GPT-22.1、模型结构2.2、范式:预…...

ASE12N65SE-ASEMI高压MOS管ASE12N65SE
编辑-Z ASE12N65SE在ITO-220AB封装里的静态漏极源导通电阻(RDS(ON))为0.68Ω,是一款N沟道高压MOS管。ASE12N65SE的最大脉冲正向电流ISM为48A,零栅极电压漏极电流(IDSS)为10uA,其工作时耐温度范围为-55~150摄氏度。ASE…...
centos8防火墙命令配置(开放端口)
查看防火墙状态:(root用户)firewall-cmd –state启动防火墙:(root用户)systemctl start firewalld.service查看防火墙开放端口:(root用户) firewall-cmd --list-ports …...
Instagram营销教程_编程入门自学教程_菜鸟教程-免费教程分享
教程简介 Instagram营销初学者教程 - 从简单和简单的步骤学习Instagram营销从基本到高级概念,包括概述,业务战略,安装和注册,发布和参与,活动审查,微调内容,营销工具和应用程序,集成…...
HTTP Code含义
HTTP Code描述详细100继续100(继续)状态代码表示一个已收到请求,尚未被拒绝服务器。服务器打算在请求已完全收到并已采取行动。当请求包含 Expect 标头字段时100-continue expectation,100响应表示服务器希望接收请求有效负载主体…...

Elasticsearch:Security API 介绍
在我之前的文章 “Elasticsearch:运用 API 创建 roles 及 users” ,我展示了如何使用 Security API 来创建用户及角色来控制访问 Elasticsearch 中的索引。在今天的文章中,我将展示一个使用 Security API 来创建一个用户及角色来访问一个索引…...

springmvc考研交流平台 java ssm mysql
随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,考研交流平台当然也不能排除在外,从备考资料、课程学习的统计和分析,在过程中会产生大量的、各种各样的…...
2.15 vue3 day01 setup ref setup的参数 prop slot插槽 自定义事件通信
二、常用 Composition API 官方文档: 组合式 API 常见问答 | Vue.js 1.拉开序幕的setup 理解:Vue3.0中一个新的配置项,值为一个函数。 setup是所有Composition API(组合API)“ 表演的舞台 ”。 组件中所用到的:数据…...
CentOs7更新Yum源
1.安装wget yum install -y wget 2.备份配置文件 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.bak 3.下载国内yum源文件(centOs7,比如阿里) wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.al…...

大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...

免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...

[拓扑优化] 1.概述
常见的拓扑优化方法有:均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有:有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...
Oracle实用参考(13)——Oracle for Linux物理DG环境搭建(2)
13.2. Oracle for Linux物理DG环境搭建 Oracle 数据库的DataGuard技术方案,业界也称为DG,其在数据库高可用、容灾及负载分离等方面,都有着非常广泛的应用,对此,前面相关章节已做过较为详尽的讲解,此处不再赘述。 需要说明的是, DG方案又分为物理DG和逻辑DG,两者的搭建…...