当前位置: 首页 > news >正文

[NOIP2015 提高组] 运输计划

题目链接
给定一棵树以及树上的 m m m 条通路,我们可以在树上选取一条边,将其权重置为 0 0 0,目标是
min ⁡ 将某条边权重置 0 max ⁡ 通路权重 . \min_{将某条边权重置 0}\max 通路权重. 将某条边权重置0minmax通路权重.

20pts(m=1)

m = 1 m=1 m=1 时,我们只需要求出树上的一条链上的权重和与权重最大值即可。

50pts

考虑一种暴力的算法,枚举将哪一条边权重置 0 0 0,然后重新在树上求解 m m m 条通路的权重。这个过程可以用 LCA 优化。任选一个结点为根,预处理出每一条通路的两个端点的 LCA,则路径长度可以通过树上差分快速计算。时间复杂度为 O ( n ( n + m ) ) O(n(n+m)) O(n(n+m))

80pts(树退化为链)

当树退化为链时,这就是一个纯粹的数据结构问题。这类最小化最大值的问题可以考虑二分答案,将其转化为判定问题。给定一个权重上界 w w w 后,我们可以 O ( m ) O(m) O(m) 算出哪些通路的权重是超过这个上界的,而这些通路全部位于一条链上,因此我们可以 O ( m ) O(m) O(m) 求出它们的交集。然后在交集中找到权重最大的一条边,如果将这条边的权重置 0 0 0 后,所有通路的权重均不超过 w w w,那么 w w w 就是一个可行的上界。

100pts

上面的二分答案方法给了我们初步的思路。现在只需考虑树上给定权重上界后如何判定:首先任取一个结点作为根结点,并将边权下推为点权。使用差分维护数组 f [ v ] f[v] f[v] 表示从 v v v 的父结点到 v v v 的这条边被经过了多少次。假设有 c n t cnt cnt 个权重超过上届的通路,那么我们只要考虑被经过 c n t cnt cnt 次的边即可。代码如下:

#include<bits/stdc++.h>
using namespace std;const int maxn = 3e5 + 10;struct edge
{int v, w;int nxt;
} e[maxn << 1];
int n, m,
ver[maxn], w[maxn], a[maxn], b[maxn], c[maxn], d[maxn], f[maxn], s[maxn], num,
top[maxn], fa[maxn], size[maxn], son[maxn], dep[maxn], dis[maxn],
l, r, mid, ans, maxw;inline void adde(int u, int v, int w)
{static int ed = 1;e[++ed] = (edge){ v, w, ver[u] };ver[u] = ed;
}inline void dfs1(int u, int f)
{s[++num] = u;size[u] = 1, fa[u] = f;for(int i = ver[u]; i; i = e[i].nxt){int v = e[i].v;if(size[v])continue;dep[v] = dep[u] + 1;w[v] = e[i].w;dis[v] = dis[u] + w[v];dfs1(v, u);size[u] += size[v];if(size[son[u]] < size[v])son[u] = v;}
}inline void dfs2(int u, int t)
{top[u] = t;if(son[u])dfs2(son[u], t);for(int i = ver[u]; i; i = e[i].nxt){int v = e[i].v;if(v == fa[u] || v == son[u])continue;dfs2(v, v);}
}inline int lca(int u, int v)
{while(top[u] != top[v]){if(dep[top[u]] < dep[top[v]])swap(u, v);u = fa[top[u]];}return dep[u] < dep[v] ? u : v;
}inline bool check(int k)
{memset(f, 0, sizeof f);int cnt = 0;for(int i = 1; i <= m; i++){if(d[i] <= k)continue;f[a[i]]++, f[b[i]]++, f[c[i]] -= 2;cnt++;}for(int i = n; i >= 1; i--){f[fa[s[i]]] += f[s[i]];if(w[s[i]] >= maxw - k && f[s[i]] == cnt)return true;}return false;
}inline int read()
{static int x;static char c;x = 0, c = getchar();while(!isdigit(c))c = getchar();while(isdigit(c))x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();return x;
}int main()
{n = read(), m = read();for(int i = 1; i < n; i++){int u = read(), v = read(), w = read();adde(u, v, w);adde(v, u, w);l = max(l, w);}dep[1] = 1;dfs1(1, 0);dfs2(1, 1);for(int i = 1; i <= m; i++){a[i] = read(), b[i] = read();c[i] = lca(a[i], b[i]);d[i] = dis[a[i]] + dis[b[i]] - (dis[c[i]] << 1);r = max(r, d[i]);}maxw = r, l = maxw - l, r++;while(l <= r){mid = (l + r) >> 1;if(check(mid))ans = mid, r = mid - 1;elsel = mid + 1;}printf("%d", ans);return 0;
}

相关文章:

[NOIP2015 提高组] 运输计划

题目链接 给定一棵树以及树上的 m m m 条通路&#xff0c;我们可以在树上选取一条边&#xff0c;将其权重置为 0 0 0&#xff0c;目标是 min ⁡ 将某条边权重置 0 max ⁡ 通路权重 . \min_{将某条边权重置 0}\max 通路权重. 将某条边权重置0min​max通路权重. 20pts(m1) 当…...

【GreendDao 】RxQuery根据指定条件查询,完成后处理UI逻辑

GreenDao 和 RxJava 结合使用可以更方便地处理数据查询和 UI 逻辑的交互。RxQuery 使得一次查询结果可以直接转化成 Observable&#xff0c;而通过 RxJava 的操作符&#xff0c;可以方便地完成异步查询和 UI 逻辑的交互。以下是一个根据指定条件查询数据&#xff0c;查询完成后…...

【C++】unordered_set 和 unordered_map 使用 | 封装

文章目录 1. 使用1. unordered_set的使用2. unordered_map的使用 2. 封装修改结构定义针对insert参数 data的两种情况复用 哈希桶的insertKeyOfT模板参数的作用 迭代器operator()beginendunordered_set对于 begin和end的复用unordered_map对于 begin和end的复用unordered_map中…...

C++环形缓冲区设计与实现:从原理到应用的全方位解析

C环形缓冲区设计与实现&#xff1a;从原理到应用的全方位解析 一、环形缓冲区基础理论解析&#xff08;Basic Theory of Circular Buffer&#xff09;1.1 环形缓冲区的定义与作用&#xff08;Definition and Function of Circular Buffer&#xff09;1.2 环形缓冲区的基本原理&…...

阿里云服务器部署flask简单方法

记录如何在阿里云服务器上部署flask接口并实现公网访问。 文章目录 1. 简介2. 部署python3环境3. 生成requirement.txt4. 将项目打包上传5. 安装依赖库6. 查看防火墙7. 测试能否公网访问 1. 简介 因落地通话callback服务测试&#xff0c;需要我写一个测试demo&#xff0c;用于…...

【JavaSE】Java基础语法(二十三):递归与数组的高级操作

文章目录 1. 递归1.1 递归1.2 递归求阶乘 2. 数组的高级操作2.1 二分查找2.2 冒泡排序2.3 快速排序2.4 Arrays (应用) 1. 递归 1.1 递归 递归的介绍 以编程的角度来看&#xff0c;递归指的是方法定义中调用方法本身的现象把一个复杂的问题层层转化为一个与原问题相似的规模较…...

HUSTOJ使用指南

如何快速上手&#xff08;了解系统的功能&#xff09;&#xff1f; admin管理员用户登录&#xff0c;点击右上角管理&#xff0c;仔细阅读管理首页的说明。 切记&#xff1a;题目导入后一次只能删一题&#xff0c;不要导入过多你暂时用不上的题目&#xff0c;正确的方式是每次…...

java基础学习

一、注释 1&#xff09;当行注释 // 2&#xff09;多行注释 /* ... */ 3&#xff09;文档注释 &#xff08;java特有&#xff09; /** author 张三 version v1.0 这是文档注释&#xff0c;需要将class用public修饰 */ 二、关键字 &#xff08;1&#xff09;48个关键…...

Linux——进程优先级

1.什么是优先级&#xff1f; 优先级和权限息息相关。权限的含义为能还是不能做这件事。而优先级则表示&#xff1a;你有权限去做&#xff0c;只不过是先去做还是后去做这件事罢了。 2.为什么会存在优先级&#xff1f; 优先级表明了狼多肉少的理念&#xff0c;举个例子&#xff…...

音频设备初始化与输出:QT与SDL策略模式的实现

音频设备初始化与输出&#xff1a;QT与SDL策略模式的实现 一、引言&#xff08;Introduction&#xff09;1.1 音频设备初始化与输出的重要性1.2 QT与SDL的音频设备处理1.3 策略模式在音频设备处理中的应用 二、深入理解音频设备初始化与输出2.1 音频设备的基本概念2.2 音频设备…...

Linux 手动部署 SpringBoot 项目

Linux 手动部署 SpringBoot 项目 1. 将项目打包成 jar 包 &#xff08;1&#xff09;引入插件 <build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId></pl…...

华为OD机试真题B卷 Java 实现【内存资源分配】

一、题目描述 有一个简易内存池,内存按照大小粒度分类,每个粒度有若干个可用内存资源,用户会进行一系列内存申请,需要按需分配内存池中的资源,返回申请结果成功失败列表。 分配规则如下: 分配的内存要大于等于内存的申请量,存在满足需求的内存就必须分配,优先分配粒度…...

深入理解ChatGPT插件:competitorppcads、seoanalysis和kraftful

1. 引言 插件&#xff0c;作为一种扩展功能的工具&#xff0c;为我们的应用程序提供了无限的可能性。在ChatGPT中&#xff0c;我们有许多强大的插件&#xff0c;如competitorppcads、seoanalysis和kraftful。这篇博客将详细介绍这三个插件的功能和使用方法。 2. competitorpp…...

通过源码编译安装LAMP平台的搭建

目录 1. 编译安装Apache httpd服务2 编写mysqld服务3 编译安装PHP 解析环境安装论坛 LAMP架构是目前成熟的企业网站应用模式之一&#xff0c;指的是协同工作的一整套系统和相关软件&#xff0c;能够提供动态Web站点服务及其应用开发环境。 LAMP是一个缩写词&#xff0c;具体包…...

mac os 安装rz/sz

说明&#xff1a;使用rz sz实现终端的文件传输&#xff0c;该命令主要使用场景为 macos中通过堡垒机登陆后无法使用ftp工具传输文件。 工具&#xff1a;iTerm2、lrzsz、homebrew 以及两个脚本文件&#xff08;iterm2-recv-zmodem.sh、iterm2-send-zmodem.sh&#xff09; …...

Redis源码(1) 建立监听服务和开启事件循环

Redis 是cs架构(服务端-客户端)&#xff0c;典型的一对多的服务器应用程序。多个客户通过网络与Redis服务器进行通信。那么在linux环境中是使用epoll(我们也 只讨论linux环境的&#xff0c;便于学习)。   通过使用I/O多路复用技术&#xff0c; redis 服务器使用单线程单进程的…...

c++基础概念,const与指针、引用的关系,auto,decltype关键字能干啥总得了解吧。总得按照需求自定义创建实体类,自己编写头文件吧

const限定符 有时我们希望定义这样一种变量&#xff0c;它的值不能被改变。例如&#xff0c;用一个变量来表示缓冲区的大小。使用变量的好处是当我们觉得缓冲区大小不再合适时&#xff0c;很容易对其进行调整。另一方面&#xff0c;也应随时警惕防止程序一不小心改变了这个值。…...

【数据结构】---几分钟简单几步学会手撕链式二叉树(下)

文章目录 前言&#x1f31f;一、二叉树链式结构的实现&#x1f30f;1.1 二叉树叶子节点个数&#x1f4ab;代码&#xff1a;&#x1f4ab;流程图&#xff1a; &#x1f30f;1.2 二叉树的高度&#x1f4ab;第一种写法(不支持)&#xff1a;&#x1f4d2;代码&#xff1a;&#x1f…...

用户验证FTP实验

用户FTP实验 目录 匿名用户验证&#xff1a; 本地用户验证&#xff1a; 本地用户访问控制&#xff1a; 匿名用户验证&#xff1a; 例&#xff1a;&#xff08;前提配置&#xff0c;防火墙关闭&#xff0c;yum安装&#xff0c;同模式vmware11&#xff09; 现有一台计算机huy…...

App 软件开发《单选4》试卷答案及解析

App 软件开发《单选4》试卷答案及解析 注&#xff1a;本文章所有答案的解析来自 ChatGPT 的回答&#xff08;给出正确答案让其解释原因&#xff09;&#xff0c;正确性请自行甄辨。 文章目录 App 软件开发《单选4》试卷答案及解析单选题&#xff08;共计0分&#xff09;1&#…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...