阿里系文生图(PAI+通义)
PAI-Diffusion模型来了!阿里云机器学习团队带您徜徉中文艺术海洋 - 知乎作者:汪诚愚、段忠杰、朱祥茹、黄俊导读近年来,随着海量多模态数据在互联网的爆炸性增长和训练深度学习大模型的算力大幅提升,AI生成内容(AI Generated Content,AIGC)的应用呈现出爆发性增长趋势。其中,文图…https://zhuanlan.zhihu.com/p/590020134EasyNLP中文文图生成模型带你秒变艺术家 - 知乎作者:汪诚愚、刘婷婷导读宣物莫大于言,存形莫善于画。 --【晋】陆机 多模态数据(文本、图像、声音)是人类认识、理解和表达世间万物的重要载体。近年来,多模态数据的爆炸性增长促进了内容互联网的繁荣,也带来…
https://zhuanlan.zhihu.com/p/547063102ModelScope 魔搭社区
https://modelscope.cn/studios/damo/ai_artist/summaryModelScope 魔搭社区
https://modelscope.cn/models/damo/cv_diffusion_text-to-image-synthesis/summaryPAI Diffusion (Food) - a Hugging Face Space by alibaba-paiDiscover amazing ML apps made by the community
https://huggingface.co/spaces/alibaba-pai/pai-diffusion-artist-xlarge-zh当大火的文图生成模型遇见知识图谱,AI画像趋近于真实世界 - 知乎作者:朱祥茹、段忠杰、汪诚愚、黄俊导读用户生成内容(User Generated Content,UGC)是互联网上多模态内容的重要组成部分,UGC数据级的不断增长促进了各大多模态内容平台的繁荣。在海量多模态数据和深度学习大模…
https://zhuanlan.zhihu.com/p/581870071对比较英文文生图,对于我们而言,其实要更关注中文文生图,目前已知的太乙,altdiffusion这两个效果很差,非开源版本,百度的文心一格,阿里系的通义,通义后续应该会开源的,其次阿里系内部还有PAI平台也在做文生图,基于easynlp,基本都是开源的。
1.PAI-Diffusion
Text encoder:使用easynlp中文clip,clilp这块阿里系内部还有通义的chineseclip,效果也很好,这里用的是easynlp自己训得跨模态对齐模型的text transformer作为text encoder.
Latent Difuusion:同sd
Auto Endoer:同sd
SR:ESRGAN
使用Wukong数据集中的2千万中文图文数据对对latent diffusion mode部分进行了20天的预训练,并在多个下游任务上微调,参数量在1B左右。
2.vqvae
2.ARTIST
ARTIST模型的构建基于Transformer模型 ,将文图生成任务分为两个阶段进行,第一阶段是通过VQGAN模型对图像进行矢量量化,即对于输入的图像,通过编码器将图像编码为定长的离散序列,解码阶段是以离散序列作为输入,输出重构图。第二阶段是将文本序列和编码后的图像序列作为输入,利用GPT模型学习以文本序列为条件的图像序列生成。为了增强模型先验,我们设计了一个Word Lattice Fusion Layer,将知识图谱中的的实体知识引入模型,辅助图像中对应实体的生成,从而使得生成的图像的实体信息更加精准。
3.通义
整体参数50B
4.评测
相关文章:

阿里系文生图(PAI+通义)
PAI-Diffusion模型来了!阿里云机器学习团队带您徜徉中文艺术海洋 - 知乎作者:汪诚愚、段忠杰、朱祥茹、黄俊导读近年来,随着海量多模态数据在互联网的爆炸性增长和训练深度学习大模型的算力大幅提升,AI生成内容(AI Gen…...

Netty概述及Hello word入门
目录 概述 Netty是什么 Netty的地位 Netty的优势 HelloWord入门程序 目标 pom依赖 服务器端 客户端 运行结果 入门把握理解 概述 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable hi…...

汇编寄存器之内存访问
1.内存中字的存储: 在CPU中用一个16位寄存器来存储一个字, 高8位存高字节,低8位存低字节 如AX寄存器存在一个字,那么AH存高字节,AL存低字节 在内存中存储字时是用两个连续的字节来存储字的, 这个字的低字节存在低单元,高字节存在高单元. 如下表示: 内存单元编号 单元中…...

C++进阶 —— lambda表达式(C++11新特性)
目录 一,模板函数sort 二,lambda表达式 一,模板函数sort 在C98中,如对一个数据集合中的元素进行排序,可使用模板函数sort,如元素为自定义类型,需定义排序时的比较规则;随着C的发展…...

数据结构04:串的存储结构与KMP算法
前言 参考用书:王道考研《2024年 数据结构考研复习指导》 参考用书配套视频:4.1_1_串的定义和基本操作_哔哩哔哩_bilibili 特别感谢: Google Bard老师[解释KMP,修改BUG]、Chat GPT老师[修改BUG]、BING老师[封面图]~ 当我请求BI…...

零基础快速搭建私人影音媒体平台
目录 1. 前言 2. Jellyfin服务网站搭建 2.1. Jellyfin下载和安装 2.2. Jellyfin网页测试 3.本地网页发布 3.1 cpolar的安装和注册 3.2 Cpolar云端设置 3.3 Cpolar本地设置 4.公网访问测试 5. 结语 转载自cpolar极点云的文章:零基础搭建私人影音媒体平台【…...

C++map和set
目录: 什么是关联式容器?键值对树形结构的关联式容器 set的概念multiset的使用pair和make_pair map的概念用“[]”实现统计水果的次数 multimap的使用 什么是关联式容器? 在初阶阶段,我们已经接触过STL中的部分容器,比…...

python接口测试之测试报告
在本文章中,主要使用jenkins和编写的自动化测试代码,来生成漂亮的测试报告,关于什么是CI这些我就不详细的介绍了,这里我们主要是实战为主。 首先搭建java的环境,这个这里不做介绍。搭建好java的环境后,在h…...

HGFormer:用于领域广义语义分割的层级式分组Transformer
文章目录 HGFormer: Hierarchical Grouping Transformer for Domain Generalized Semantic Segmentation摘要本文方法实验结果 HGFormer: Hierarchical Grouping Transformer for Domain Generalized Semantic Segmentation 摘要 目前的语义分割模型在独立同分布条件下取得了…...

async函数用法
目录 1.概念 2.本质 3.语法 4.特点 5.async基本使用 6.async里的await普通函数返回值 7.async里的await Promise函数成功返回值 8.async里的await Promise函数失败返回值 9.解决async里的await Promise函数失败后不执行下面内容 1.概念 真正意义上解决异步回调的问题&am…...

简谈软件版本周期 | Alpha、Beta、RC、Stable版本之间的区别
目录 💌 引言 ⭕ 软件版本周期 🛠️ 软件开发期 ⚖️ 软件完成期 💰 商业软件版本 💌 引言 定义好版本号,对于产品的版本发布与持续更新很重要;但是对于版本怎么定义,规则如何确定&#x…...

VS2022发布独立部署的.net程序
.net core支持依赖框架部署和独立部署两种方式,之前学习时是在VSCode中使用dotnet命令发布的。但是在VS2022中却不知道该如何设置。以获取PDF文件使用字体的项目为例,VS2022中默认编译的是依赖框架部署方式(编译的结果如下图所示)…...

5-网络初识——封装和分用
目录 1.数据封装的过程 2.数据分用的过程 PS:网络数据传输的基本流程(以QQ为例,A给B发送一个hello): 一、发送方: 二、接收方: 不同的协议层对数据包有不同的称谓,在传输层叫做…...
机器学习——特征工程
对于机器学习特征工程的知识,你是怎样理解“特征” 在机器学习中,特征(Feature)是指从原始数据中提取出来的、用于训练和测试机器学习模型的各种属性、变量或特点。特征可以是任何类型的数据,例如数字、文本、图像、音…...

ubuntu安装搜狗输入法,图文详解+踩坑解决
搜狗输入法已支持Ubuntu16.04、18.04、19.10、20.04、20.10,本教程系统是基于ubuntu18.04 一、添加中文语言支持 系统设置—>区域和语言—>管理已安装的语言—>在“语言”tab下—>点击“添加或删除语言”。 弹出“已安装语言”窗口,勾选中文…...

docker 数据持久化
目录 一、将本地目录直接映射到容器里(运行成容器时候进行映射) 二、数据卷模式 1、创建数据卷 2、查看数据卷列表,有哪些数据卷 3、查看某个数据卷 4、容器目录挂载到数据卷 5、数据卷的优势:多个容器共享一个数据卷 默认…...
Pytest运行指定的case,这个方法真的很高效……
Pytest运行指定的case 在测试工作中,当我们写了较多的cases时,如果每次都要全部运行一遍,无疑是很浪费时间的,而且效率低下。 但是有一种方法可以帮助你快速地运行指定的测试用例,提高测试效率,那就是使用…...

操作系统复习2.3.4-进程同步问题
生产者-消费者 系统中有一组生产者进程和一组消费者进程 两者共享一个初始为空,大小为n的缓冲区 缓冲区没满,生产者才能放入 缓冲区没空,消费者才能取出 互斥地访问缓冲区 互斥要在同步之后,不然会导致想要同步,但由…...

3ds MAX 基本体建模,长方体、圆柱体和球体
3ds MAX基本页面如下: 生成新的几何体在右侧: 选择生成的对象类型即可,以下为例子: 1、长方体建模 选择建立的对象类型为长方形 在 任意一个窗口绘制,鼠标滑动 这里选择左上角的俯视图 松开鼠标后,可以…...

搭建个人博客
个人网站用处有很多,可以写博客来记录学习过程中的各种事,不管是新知识还是踩坑记录,写完就丢在网站上,方便日后复习,也可以共享给他人,让其他人避免踩雷。 当然也不仅限于技术性的文章,生活中有…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...