count(0)、count(1)和count(*)、count(列名) 的区别
当我们对一张数据表中的记录进行统计的时候,习惯都会使用 count 函数来统计,但是 count 函数传入的参数有很多种,比如 count(1)、count(*)、count(字段) 等。
到底哪种效率是最好的呢?是不是 count(*) 效率最差?
一. 哪种 count 性能最好?
哪种 count 性能最好?
我先直接说结论:

要弄明白这个,我们得要深入 count 的原理,以下内容基于常用的 innodb 存储引擎来说明。
count() 是什么?
count() 是一个聚合函数,函数的参数不仅可以是字段名,也可以是其他任意表达式,该函数作用是统计符合查询条件的记录中,函数指定的参数不为 NULL 的记录有多少个。
假设 count() 函数的参数是字段名,如下:
select count(name) from t_order;
这条语句是统计「 t_order 表中,name 字段不为 NULL 的记录」有多少个。也就是说,如果某一条记录中的 name 字段的值为 NULL,则就不会被统计进去。
再来假设 count() 函数的参数是数字 1 这个表达式,如下:
select count(1) from t_order;
这条语句是统计「 t_order 表中,1 这个表达式不为 NULL 的记录」有多少个。
1 这个表达式就是单纯数字,它永远都不是 NULL,所以上面这条语句,其实是在统计 t_order 表中有多少个记录。
count(主键字段) 执行过程是怎样的?
在通过 count 函数统计有多少个记录时,MySQL 的 server 层会维护一个名叫 count 的变量。
server 层会循环向 InnoDB 读取一条记录,如果 count 函数指定的参数不为 NULL,那么就会将变量 count 加 1,直到符合查询的全部记录被读完,就退出循环。最后将 count 变量的值发送给客户端。
InnoDB 是通过 B+ 树来保存记录的,根据索引的存储方式又分为聚簇索引和二级索引(即聚簇索引和非聚簇索引。聚簇索引通常与表的主键相关联),它们区别在于,聚簇索引的叶子节点存放的是实际数据,而二级索引的叶子节点存放的是主键值,而不是实际数据。
用下面这条语句作为例子:
//id 为主键值
select count(id) from t_order;
如果表里只有主键索引,没有二级索引时,那么,InnoDB 循环遍历聚簇索引,将读取到的记录返回给 server 层,然后读取记录中的 id 值,就会根据 id 值判断是否为 NULL,如果不为 NULL,就将 count 变量加 1。

但是,如果表里有二级索引时,InnoDB 循环遍历的对象就不是聚簇索引,而是二级索引。
这是因为相同数量的二级索引记录可以比聚簇索引记录占用更少的存储空间,所以二级索引树比聚簇索引树小,这样遍历二级索引的 I/O 成本比遍历聚簇索引的 I/O 成本小,因此「优化器」优先选择的是二级索引。
count(1) 执行过程是怎样的?
用下面这条语句作为例子:
select count(1) from t_order;
如果表里只有主键索引,没有二级索引时。

那么,InnoDB 循环遍历聚簇索引(主键索引),将读取到的记录返回给 server 层,但是不会读取记录中的任何字段的值,因为 count 函数的参数是 1,不是字段,所以不需要读取记录中的字段值。参数 1 很明显并不是 NULL,因此 server 层每从 InnoDB 读取到一条记录,就将 count 变量加 1。
可以看到,count(1) 相比 count(主键字段) 少一个步骤,就是不需要读取记录中的字段值,所以通常会说 count(1) 执行效率会比 count(主键字段) 高一点。
但是,如果表里有二级索引时,InnoDB 循环遍历的对象就二级索引了。
count(*) 执行过程是怎样的?
看到 * 这个字符的时候,是不是大家觉得是读取记录中的所有字段值?
对于 selete * 这条语句来说是这个意思,但是在 count(*) 中并不是这个意思。
count(\*) 其实等于 count(0),也就是说,当你使用 count(*) 时,MySQL 会将 * 参数转化为参数 0 来处理。
所以,count(*) 执行过程跟 count(1) 执行过程基本一样的,性能没有什么差异。
在 MySQL 5.7 的官方手册中有这么一句话:
InnoDB handles SELECT COUNT(\*) and SELECT COUNT(1) operations in the same way. There is no performance difference.
翻译:InnoDB以相同的方式处理SELECT COUNT(\*)和SELECT COUNT(1)操作,没有性能差异。
而且 MySQL 会对 count(*) 和 count(1) 有个优化,如果有多个二级索引的时候,优化器会使用key_len 最小的二级索引进行扫描。
只有当没有二级索引的时候,才会采用主键索引来进行统计。
count(字段) 执行过程是怎样的?
count(字段) 的执行效率相比前面的 count(1)、 count(*)、 count(主键字段) 执行效率是最差的。
用下面这条语句作为例子:
//name不是索引,普通字段
select count(name) from t_order;
对于这个查询来说,会采用全表扫描的方式来计数,所以它的执行效率是比较差的。

小结
count(1)、 count(*)、 count(主键字段)在执行的时候,如果表里存在二级索引,优化器就会选择二级索引进行扫描。
所以,如果要执行 count(1)、 count(*)、 count(主键字段) 时,尽量在数据表上建立二级索引,这样优化器会自动采用 key_len 最小的二级索引进行扫描,相比于扫描主键索引效率会高一些。
再来,就是不要使用 count(字段) 来统计记录个数,因为它的效率是最差的,会采用全表扫描的方式来统计。如果你非要统计表中该字段不为 NULL 的记录个数,建议给这个字段建立一个二级索引。
二. 为什么要通过遍历的方式来计数?
你可以会好奇,为什么 count 函数需要通过遍历的方式来统计记录个数?
我前面将的案例都是基于 Innodb 存储引擎来说明的,但是在 MyISAM 存储引擎里,执行 count 函数的方式是不一样的,通常在没有任何查询条件下的 count(*),MyISAM 的查询速度要明显快于 InnoDB。
使用 MyISAM 引擎时,执行 count 函数只需要 O(1 )复杂度,这是因为每张 MyISAM 的数据表都有一个 meta 信息有存储了row_count值,由表级锁保证一致性,所以直接读取 row_count 值就是 count 函数的执行结果。
而 InnoDB 存储引擎是支持事务的,同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB 表“应该返回多少行”也是不确定的,所以无法像 MyISAM一样,只维护一个 row_count 变量。
举个例子,假设表 t_order 有 100 条记录,现在有两个会话并行以下语句:

在会话 A 和会话 B的最后一个时刻,同时查表 t_order 的记录总个数,可以发现,显示的结果是不一样的。所以,在使用 InnoDB 存储引擎时,就需要扫描表来统计具体的记录。
而当带上 where 条件语句之后,MyISAM 跟 InnoDB 就没有区别了,它们都需要扫描表来进行记录个数的统计。
三. 如何优化 count(*)?
如果对一张大表经常用 count(*) 来做统计,其实是很不好的。
比如下面我这个案例,表 t_order 共有 1200+ 万条记录,我也创建了二级索引,但是执行一次 select count(*) from t_order 要花费差不多 5 秒!
面对大表的记录统计,我们有没有什么其他更好的办法呢?
*第一种,近似值*
如果你的业务对于统计个数不需要很精确,比如搜索引擎在搜索关键词的时候,给出的搜索结果条数是一个大概值。
这时,我们就可以使用 show table status 或者 explain 命令来表进行估算。
执行 explain 命令效率是很高的,因为它并不会真正的去查询,下图中的 rows 字段值就是 explain 命令对表 t_order 记录的估算值。
第二种,额外表保存计数值
如果是想精确的获取表的记录总数,我们可以将这个计数值保存到单独的一张计数表中。
当我们在数据表插入一条记录的同时,将计数表中的计数字段 + 1。也就是说,在新增和删除操作时,我们需要额外维护这个计数表。
四. 总结
1、从执行结果上分析:
(1)、count(0)、count(1)和count(*)不会过滤空值
(2)、count(列名)会过滤空值
2、从执行效率上分析:
count(*)=count(0)=count(1)>count(主键字段)>count(非主键字段)
相关文章:
count(0)、count(1)和count(*)、count(列名) 的区别
当我们对一张数据表中的记录进行统计的时候,习惯都会使用 count 函数来统计,但是 count 函数传入的参数有很多种,比如 count(1)、count(*)、count(字段) 等。 到底哪种效率是最好的呢?是不是 count(*) 效率最差? 一.…...
python爬虫入门,10分钟就够了,这可能是我见过最简单的基础教学
一、基础入门 1.1什么是爬虫 爬虫(spider,又网络爬虫),是指向网站/网络发起请求,获取资源后分析并提取有用数据的程序。 从技术层面来说就是 通过程序模拟浏览器请求站点的行为,把站点返回的HTML代码/JSON数据/二进制数据&…...
华为OD机试真题 Java 实现【记票统计】【牛客练习题】
一、题目描述 请实现一个计票统计系统。你会收到很多投票,其中有合法的也有不合法的,请统计每个候选人得票的数量以及不合法的票数。 (注:不合法的投票指的是投票的名字不存在n个候选人的名字中!!) 数据范围:每组输入中候选人数量满足 1≤n≤100 ,总票数量满足 1≤…...
.NET并行计算
一段很简答的,模拟多任务并发的测试代码。 private void button_Click(object sender, EventArgs e) { List<Action> actions new List<Action>(); for (int i 0; i < 30; i) { //匿…...
Python:Python编程:金融量化交易
金融量化交易 1. numpy2. scipy3. Pandas3.1 : Series 3.2: DataFrame代码示例 在金融量化交易中,下面几个模块是应用的比较广泛的 numpy (Numberic Python) : 提供大量的数值编程工具,可以方便的处理:向量矩阵等运算,…...
「HTML和CSS入门指南」canvas 标签详解
什么是 canvas 标签? 在 HTML 中,canvas 标签用于在网页中绘制图形、动画和其他复杂的视觉效果。它是一个独立的标签,并且可以使用 JavaScript 来操纵和渲染其内容。使用 canvas 标签可以帮助您创造交互性更强、生动更具吸引力的用户界面和体验。 canvas 标签的基本语法 以…...
【JS】1699- 重学 JavaScript API - WebSockets API
❝ 前期回顾: 1. Page Visibility API 2. Broadcast Channel API 3. Beacon API 4. Resize Observer API 5. Clipboard API 6. Fetch API 7. Performance API 8. Web Storage API ❞ WebSockets API 提供了一种在客户端和服务器之间建立持久连接的机制,使…...
String s = new String(“xyz“) 创建了几个对象?
这个问题相信每个学习 java 的同学都不陌生,作为一个经典的面试题,到现在工作这么多年了我真是认为挺操蛋的一个问题,在网上到现在你仍然可以看见很多讨论这个问题的人,其中不乏工作很多年的人都有争论,我认为还是有必…...
STL库(1)
STL库(1) vectorvector介绍vector使用初始化元素访问内存扩容插入删除 listlist介绍初始化,元素访问插入删除元素 vector和list区别 vector vector介绍 vector是可以改变大小的数组的容器。其内存结构和数组一样,使用连续的存储…...
玻璃制品行业丨外贸业务管理难点及解决方案
玻璃作为一种重要的建筑材料,在国际贸易中一直占有一定的份额。随着国外市场需求量的不断增加,对玻璃制品的技术含量要求越来越高,需要在研发方面的投入也逐步加大。由于国际市场竞争激烈,想要做玻璃制品行业的外贸公司࿰…...
Spring Boot如何实现自定义Spring Boot启动器
Spring Boot如何实现自定义Spring Boot启动器 在Spring Boot中,启动器(Starter)是一组依赖项的集合,它们一起提供了某个特定的功能。使用Spring Boot启动器可以让我们更加方便地集成第三方库和框架,并且可以避免版本冲…...
【面试题HTTP中的两种请求方法】GET 和 POST 有什么区别?
GET 和 POST 有什么区别? 1.相同点和最本质的区别1.1 相同点1.2 最本质的区别 2.非本质区别2.1 缓存不同2.2 参数长度限制不同2.3 回退和刷新不同2.4 历史记录不同2.5 书签不同 总结代码示例 GET 和 POST 是 HTTP 请求中最常用的两种请求方法,在日常开发…...
Allegro16.6详细教程(三)
確定Pad的層面 (1)用Single layer mode開關來控制pad type 勾選Single layer mode,則pad為單面孔,比如SMD 不勾選Single layer mode,則pad為通孔,比如:via (2)用滑鼠左鍵點選BEGIN LAYER彈出下面3個欄位 Regular, Thermal Relief, Anti Pad;Regular用於正片,Thermal R…...
Python3数据分析与挖掘建模(6)离散分布分析示例
1. 离散分布分析示例 相关库: pandas详细用法 numpy详细用法 1.1 引入算法库 # 引入 pandas库 import pandas as pd # 引入 numpy库 import numpy as np# 读取数据 dfpd.read_csv("data/HR.csv")# 查看数据 df Out[6]: satisfaction_level last_eval…...
汇编语言程序设计基础知识二
五、顺序结构 1、程序设计的步骤 1、分析问题 2、建立数据模型 3、设计算法 4、编制程序 5、上机调试 2、流程图的应用 3、程序的基本控制结构 1、顺序结构:程序顺序执行,不发生跳转 2、分支结构:程序在执行过程中发生跳转 3、循环…...
一文详解!Robot Framework Selenium UI自动化测试入门篇
目录 前言: 自动化框架的选择 测试环境的搭建 导入Selenium2Library包 关键字是什么? 创建测试用例 前言: 自动化测试的重要性越来越受到人们的重视,因为它可以提高测试效率、降低测试成本并减少人为错误的出现。为了满足这…...
Java 9 模块化系统详解
Java 9 模块化系统详解 一、简介1. 引入模块化系统原因2. 模块化系统带来的优势和挑战3. 模块化关键概念 二、模块化基础1. 模块化源代码结构规范2. 模块定义与描述符3. 打包可执行模块 三、模块化系统的高级特性1. 模块发现与解决依赖2. 模块化升级与替换3. 模块化动态访问 四…...
Windows定时执行Python脚本
在Linux环境下我们可以使用crontab工具来定时的执行脚本,可以很轻松的管理各个虚拟环境下的py文件在Windows上可以使用任务计划程序来定时执行我们的脚本 关于这个的基本使用可以查看我前面的博客 https://blog.csdn.net/wyh1618/article/details/125725967?spm10…...
数据科学简介:如何使用 Pandas 库处理 CSV 文件
部分数据来源:ChatGPT 什么是 CSV 文件? CSV ( Comma Separated Values)文件是一种常见的文本文件格式,它通常用于存储结构化数据,因为它可以轻松地转换成电子表格,如Excel。 CSV 文件是以逗号作为分隔符的表格数据。文件中的每行代表一个记录,每列代表一个属性。例如…...
面试专题:java多线程(2)-- 线程池
1.为什么要用线程池? 线程池提供了一种限制和管理资源(包括执行一个任务)。 每个线程池还维护一些基本统计信息,例如已完成任务的数量。 这里借用《Java并发编程的艺术》提到的来说一下使用线程池的好处: 降低资源消…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
