Apache Hudi初探(八)(与spark的结合)--非bulk_insert模式
背景
之前讨论的都是’hoodie.datasource.write.operation’:'bulk_insert’的前提下,在这种模式下,是没有json文件的已形成如下的文件:
/dt=1/.hoodie_partition_metadata
/dt=1/2ffe3579-6ddb-4c5f-bf03-5c1b5dfce0a0-0_0-41263-0_20230528233336713.parquet
/dt=1/30b7d5b2-12e8-415a-8ec5-18206fe601c0-0_0-22102-0_20230528231643200.parquet
/dt=1/4abc1c6d-a8aa-4c15-affc-61a35171ce69-0_4-22106-0_20230528231643200.parquet
/dt=1/513dee80-2e8c-4db8-baee-a767b9dba41c-0_2-22104-0_20230528231643200.parquet
/dt=1/57076f86-0a62-4f52-8b50-31a5f769b26a-0_1-22103-0_20230528231643200.parquet
/dt=1/84553727-be9d-4273-bad9-0a38d9240815-0_0-59818-0_20230528233513387.parquet
/dt=1/fecd6a84-9a74-40b1-bfc1-13612a67a785-0_0-26640-0_20230528231723951.parquet
因为是"bulk insert"操作,所以没有去重的需要,所以直接采用spark原生的方式,
以下我们讨论非spark原生的方式,
闲说杂谈
继续Apache Hudi初探(二)(与spark的结合)
剩下的代码:
val reconcileSchema = parameters(DataSourceWriteOptions.RECONCILE_SCHEMA.key()).toBooleanval (writeResult, writeClient: SparkRDDWriteClient[HoodieRecordPayload[Nothing]]) =...case _ => { // any other operation// register classes & schemasval (structName, nameSpace) = AvroConversionUtils.getAvroRecordNameAndNamespace(tblName)sparkContext.getConf.registerKryoClasses(Array(classOf[org.apache.avro.generic.GenericData],classOf[org.apache.avro.Schema]))// TODO(HUDI-4472) revisit and simplify schema handlingval sourceSchema = AvroConversionUtils.convertStructTypeToAvroSchema(df.schema, structName, nameSpace)val latestTableSchema = getLatestTableSchema(sqlContext.sparkSession, tableMetaClient).getOrElse(sourceSchema)val schemaEvolutionEnabled = parameters.getOrDefault(DataSourceReadOptions.SCHEMA_EVOLUTION_ENABLED.key(), "false").toBooleanvar internalSchemaOpt = getLatestTableInternalSchema(hoodieConfig, tableMetaClient)val writerSchema: Schema =if (reconcileSchema) {// In case we need to reconcile the schema and schema evolution is enabled,// we will force-apply schema evolution to the writer's schemaif (schemaEvolutionEnabled && internalSchemaOpt.isEmpty) {internalSchemaOpt = Some(AvroInternalSchemaConverter.convert(sourceSchema))}if (internalSchemaOpt.isDefined) {...// Convert to RDD[HoodieRecord]val genericRecords: RDD[GenericRecord] = HoodieSparkUtils.createRdd(df, structName, nameSpace, reconcileSchema,org.apache.hudi.common.util.Option.of(writerSchema))val shouldCombine = parameters(INSERT_DROP_DUPS.key()).toBoolean ||operation.equals(WriteOperationType.UPSERT) ||parameters.getOrElse(HoodieWriteConfig.COMBINE_BEFORE_INSERT.key(),HoodieWriteConfig.COMBINE_BEFORE_INSERT.defaultValue()).toBooleanval hoodieAllIncomingRecords = genericRecords.map(gr => {val processedRecord = getProcessedRecord(partitionColumns, gr, dropPartitionColumns)val hoodieRecord = if (shouldCombine) {val orderingVal = HoodieAvroUtils.getNestedFieldVal(gr, hoodieConfig.getString(PRECOMBINE_FIELD), false, parameters.getOrElse(DataSourceWriteOptions.KEYGENERATOR_CONSISTENT_LOGICAL_TIMESTAMP_ENABLED.key(),DataSourceWriteOptions.KEYGENERATOR_CONSISTENT_LOGICAL_TIMESTAMP_ENABLED.defaultValue()).toBoolean).asInstanceOf[Comparable[_]]DataSourceUtils.createHoodieRecord(processedRecord,orderingVal,keyGenerator.getKey(gr),hoodieConfig.getString(PAYLOAD_CLASS_NAME))} else {DataSourceUtils.createHoodieRecord(processedRecord, keyGenerator.getKey(gr), hoodieConfig.getString(PAYLOAD_CLASS_NAME))}hoodieRecord}).toJavaRDD()val writerDataSchema = if (dropPartitionColumns) generateSchemaWithoutPartitionColumns(partitionColumns, writerSchema) else writerSchema// Create a HoodieWriteClient & issue the write.val client = hoodieWriteClient.getOrElse(DataSourceUtils.createHoodieClient(jsc, writerDataSchema.toString, path,tblName, mapAsJavaMap(addSchemaEvolutionParameters(parameters, internalSchemaOpt) - HoodieWriteConfig.AUTO_COMMIT_ENABLE.key))).asInstanceOf[SparkRDDWriteClient[HoodieRecordPayload[Nothing]]]if (isAsyncCompactionEnabled(client, tableConfig, parameters, jsc.hadoopConfiguration())) {asyncCompactionTriggerFn.get.apply(client)}if (isAsyncClusteringEnabled(client, parameters)) {asyncClusteringTriggerFn.get.apply(client)}val hoodieRecords =if (hoodieConfig.getBoolean(INSERT_DROP_DUPS)) {DataSourceUtils.dropDuplicates(jsc, hoodieAllIncomingRecords, mapAsJavaMap(parameters))} else {hoodieAllIncomingRecords}client.startCommitWithTime(instantTime, commitActionType)val writeResult = DataSourceUtils.doWriteOperation(client, hoodieRecords, instantTime, operation)(writeResult, client)}
-
如果开启了Schema Evolution,也就是hoodie.datasource.write.reconcile.schema是true,默认是false,就会进行schema的合并
convertStructTypeToAvroSchema 把df的schema转换成avro的schema
并且从*.hoodie/20230530073115535.deltacommit* 获取internalSchemaOpt,具体的合并就是把即将写入的schema和internalSchemaOpt进行合并
最后赋值给writerSchema,有可能还需要hoodie.schema.on.read.enable,默认是false -
HoodieSparkUtils.createRdd 创建RDD
把df转换为了RDD[GenericRecord]类型,赋值给genericRecords -
val hoodieAllIncomingRecords = genericRecords.map(gr => {
- 首先如果是hoodie.datasource.write.drop.partition.columns为true(默认是false),则会从schema中删除hoodie.datasource.write.
partitionpath.field字段 - 如果hoodie.datasource.write.insert.drop.duplicates为true(默认是false)或者hoodie.datasource.write.operation是upsert(默认
是upsert),或者hoodie.combine.before.insert为true(默认是false),
则会创建HoodieAvroRecord<>(hKey, payload)类型的实例,其中HoodieKey以recordkey和partitionpath组成,playload为OverwriteWithLatestAvroPayload实例, - hoodieAllIncomingRecords就变成了RDD[HoodieAvroRecord]
- 首先如果是hoodie.datasource.write.drop.partition.columns为true(默认是false),则会从schema中删除hoodie.datasource.write.
-
writerDataSchema= client 这些就是创建SparkRDDWriteClient 客户端
-
isAsyncCompactionEnabled
默认asyncCompactionTriggerFnDefined是没有的,所以不会开启异步的Compaction,isAsyncClusteringEnabled同理也是 -
val hoodieRecords =
如果配置了hoodie.datasource.write.insert.drop.duplicates为true(默认是false),则会进行去重处理,具体是调用DataSourceUtils.dropDuplicates方法:SparkRDDReadClient client = new SparkRDDReadClient<>(new HoodieSparkEngineContext(jssc), writeConfig);return client.tagLocation(incomingHoodieRecords).filter(r -> !((HoodieRecord<HoodieRecordPayload>) r).isCurrentLocationKnown());
- SparkRDDReadClient client 在创建Client的时候,会进行索引的创建this.index = SparkHoodieIndexFactory.createIndex(clientConfig);
如果有hoodie.index.class设置,则实例化对象,否则根据hoodie.index.type的值来建立索引(默认是HoodieSimpleIndex,适合做测试用) - client.tagLocation(incomingHoodieRecords)…
从要插入的记录中过滤出在index中不存在的记录,最终调用的是index.tagLocation方法
如果hoodie.datasource.write.insert.drop.duplicates为false,则保留所有的记录
- SparkRDDReadClient client 在创建Client的时候,会进行索引的创建this.index = SparkHoodieIndexFactory.createIndex(clientConfig);
-
client.startCommitWithTime 开始写操作,这涉及到回滚的操作
- 会先过滤出需要回滚的的的写失败的文件,如果hoodie.cleaner.policy.failed.writes是EAGER(默认是EAGER),就会在这次提交中回滚失败的文件
- 然后创建一个后缀为deltacommit.requested的文件,此时没有真正的写
-
val writeResult = DataSourceUtils.doWriteOperation
真正的写操作
相关文章:
Apache Hudi初探(八)(与spark的结合)--非bulk_insert模式
背景 之前讨论的都是’hoodie.datasource.write.operation’:bulk_insert’的前提下,在这种模式下,是没有json文件的已形成如下的文件: /dt1/.hoodie_partition_metadata /dt1/2ffe3579-6ddb-4c5f-bf03-5c1b5dfce0a0-0_0-41263-0_202305282…...
Java之旅(九)
Java 循环语句 Java 中的循环语句包括 for、while 和 do-while,它们都可以用于实现循环结构。 for 语句用于循环执行一段代码块,直到给定的条件表达式的布尔值为 false。 for 语句的一般格式如下: for (initialization; condition; update…...

6年测试经验之谈,为什么要做自动化测试?
一、自动化测试 自动化测试是把以人为驱动的测试行为转化为机器执行的一种过程。 个人认为,只要能服务于测试工作,能够帮助我们提升工作效率的,不管是所谓的自动化工具,还是简单的SQL 脚本、批处理脚本,还是自己编写…...
二分法的边界条件 2517. 礼盒的最大甜蜜度
2517. 礼盒的最大甜蜜度 给你一个正整数数组 price ,其中 price[i] 表示第 i 类糖果的价格,另给你一个正整数 k 。 商店组合 k 类 不同 糖果打包成礼盒出售。礼盒的 甜蜜度 是礼盒中任意两种糖果 价格 绝对差的最小值。 返回礼盒的 最大 甜蜜度。 记录一…...

java设计模式(十六)命令模式
目录 定义模式结构角色职责代码实现适用场景优缺点 定义 命令模式(Command Pattern) 又叫动作模式或事务模式。指的是将一个请求封装成一个对象,使发出请求的责任和执行请求的责任分割开,然后可以使用不同的请求把客户端参数化&a…...
[运维] iptables限制指定ip访问指定端口和只允许指定ip访问指定端口
iptables限制指定ip访问指定端口 要使用iptables限制特定IP地址访问特定端口,您可以使用以下命令: iptables -A INPUT -p tcp -s <IP地址> --dport <端口号> -j DROP请将 <IP地址> 替换为要限制的IP地址,将 <端口号&g…...
JS学习笔记(3. 流程控制)
1. 分歧 1.1 if条件 if (条件) {...} // 为真则执行,单条语句可省略大括号 if (条件) {...} else {...}// 为真则执行if,否则执行else if (条件1) {...} else if (条件2) {...} else {...} // 条件1为真则,条件2为真则,否则执…...

遥感云大数据在灾害、水体与湿地领域典型案例及GPT模型教程
详情点击链接:遥感云大数据在灾害、水体与湿地领域典型案例及GPT模型教程 一:平台及基础开发平台 GEE平台及典型应用案例; GEE开发环境及常用数据资源; ChatGPT、文心一言等GPT模型 JavaScript基础; GEE遥感云重…...

什么是文件描述符以及重定向的本质和软硬链接(Linux)
目录 1 什么是文件?什么是文件操作?认识系统接口open 什么是文件描述符认识Linux底层进程如何打开的文件映射关系重定向的本质理解软硬链接扩展问题 1 什么是文件?什么是文件操作? 文件 文件内容 文件属性(文件属性…...

LVM逻辑卷元数据丢失恢复案例 —— 筑梦之路
Lvm常见的故障主要是pv出现异常,有以下几种情况 一个是pv所在的磁盘发生了lvm的元数据损坏一个是系统无法识别到pv所在的磁盘一个是系统异常,断电等导致重启后盘符发生变化,也就是系统识别的磁盘uuid发生变化,但是wwid还是可以对应…...

Java技术规范概览
Java技术规范 目录概述需求: 设计思路实现思路分析1.Java JSR的部分2.JSR-000373.JSR-0000394.JSR-000337 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a bet…...

【OpenMMLab AI实战营第二期】二十分钟入门OpenMMLab笔记
OpenMMlab 主页:openmmlab.com 开源地址:https://github.com/open-mmlab 学习视频地址:https://www.bilibili.com/video/BV1js4y1i72P/ 概述 开源成为人工智能行业发展引擎 时间轴 theano:2007 Caffe:2013 Ten…...

docker-compose单机容器集群编排
docker-compose dockerfile模板文件可以定义一个独立的应用容器,如果需要多个容器就需要服务编排。服务编排有很多技术方案 docker-compose开源的项目实现对容器集群的快速编排 docker-compose将所管理的容器分为三层,分别为工程,服务&#…...
CentOS7 安装Gitlab
1、安装依赖 sudo yum install -y curl openssh-server ca-certificates tzdata perl libsemanage-devel 2、安装邮件服务工具 sudo yum install -y postfix 3、配置GitLab 软件源镜像 curl -fsSL https://packages.gitlab.cn/repository/raw/scripts/setup.sh | /bin/bash …...

Mysql InnoDB的Buffer Pool
Buffer Pool 在MySQL服务器启动的时候就向操作系统申请了⼀⽚连续的内存,他们给这⽚内存起了个名,叫做Buffer Pool(中⽂名 是缓冲池)。 默认情况下Buffer Pool只有128M⼤⼩,最⼩值为5M,通过修改配置文件设…...

SMTP简单邮件传输协议(C/C++ 发送电子邮件)
SMTP是用于通过Internet发送电子邮件的协议。电子邮件客户端(如Microsoft Outlook或macOS Mail应用程序)使用SMTP连接到邮件服务器并发送电子邮件。邮件服务器还使用SMTP将邮件从一个邮件服务器交换到另一个。它不用于从服务器下载电子邮件;相…...

uploads靶场通关(1-11关)
Pass-01(JS校验) 看题目我们准备好我们的php脚本文件,命名为1.php 上传该php文件,发现上传失败 方法一:将浏览器的JavaScript禁用 然后就能上传了 方法二: 查看源码,发现只能上传以下形式的文…...

6.1黄金探底回升是否到顶,今日多空如何布局
近期有哪些消息面影响黄金走势?今日黄金多空该如何研判? 黄金消息面解析:周三(5月31日)黄金期货价格攀升,美国国债收益率下降推动金价升至一周最高收盘位。美市尾盘,现货黄金收报1962.42美元/盎司,上升3…...

自定义ViewGroup实现流式布局
目录 1、View的绘制流程 2、自定义ViewGroup构造函数的作用 3、onMeasure 方法 3.1、View的度量方式 3.2、onMeasure方法参数的介绍 3.3、自定义ViewGroup onMeasure 方法的实现 4、onLayout方法 5、onDraw方法 6、自定义View的生命周期 7、自定义流式布局的实现 扩展ÿ…...

Git版本控制
目录 版本控制 概念 为什么需要版本控制? 常见的版本控制工具 Git 1、安装 2、了解基本的Linux命令 3、配置git 用户名和邮箱 4、git 工作模式 5、git 项目管理 6、git 分支 托管平台 远程仓库 Gitee 关联多个远程库 Git服务器 Git GUI 版本控制 概…...

网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...

ui框架-文件列表展示
ui框架-文件列表展示 介绍 UI框架的文件列表展示组件,可以展示文件夹,支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项,适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...