当前位置: 首页 > news >正文

线程引入的开销

单线程程序既不存在线程调度,也不存在同步开销,而且不需要使用锁来保证数据结构的一致性。在多个线程的调度和协调过程中都需要一定的性能开销:对于为了提升性能而引入的线程来说,并行带来的性能提升必须超过并发导致的开销。

 上下文切换

如果主线程是唯一的线程,那么它基本上不会被调度出去。另一方面,如果可运行的线程数大于CPU的数量,那么操作系统最终会将某个正在运行的线程调度出来,从而使其他线程能够使用CPU。这将导致一次上下文切换,在这个过程中将保存当前运行线程的执行上下文,并将新调度进来的线程的执行上下文设置为当前上下文。

切换上下文需要一定的开销,而在线程调度过程中需要访问由操作系统和JVM共享的数据结构。应用程序、操作系统以及JVM都使用一组相同的CPU。在JVM 和操作系统的代码中消耗越多的CPU时钟周期,应用程序的可用CPU时钟周期就越少。但上下文切换的开销并不只是包含JVM和操作系统的开销。当一个新的线程被切换进来时,它所需要的数据可能不在当前处理器的本地缓存中,因此上下文切换将导致一些缓存缺失,因而线程在首次调度运行时会更加缓慢。这就是为什么调度器会为每个可运行的线程分配一个最小执行时间,即使有许多其他的线程正在等待执行:它将上下文切换的开销分摊到更多不会中断的执行时间上,从而提高整体的吞吐量(以损失响应性为代价)。

当线程由于等待某个发生竞争的锁而被阻塞时,JVM通常会将这个线程挂起,并允许它被交换出去。如果线程频繁地发生阻塞,那么它们将无法使用完整的调度时间片。在程序中发生越多的阻塞(包括阻塞I/O,等待获取发生竞争的锁,或者在条件变量上等待),与CPU密集型的程序就会发生越多的上下文切换,从而增加调度开销,并因此而降低吞吐量。

上下文切换的实际开销会随着平台的不同而变化,然而按照经验来看:在大多数通用的处理器中,上下文切换的开销相当于5000~10000个时钟周期,也就是几微秒。

UNIX 系统的vmstat 命令和Windows系统的perfmon 工具都能报告上下文切换次数以及在内核中执行时间所占比例等信息。如果内核占用率较高(超过10%),那么通常表示调度活动发生得很频繁,这很可能是由I/O或竞争锁导致的阻塞引起的。

  内存同步

同步操作的性能开销包括多个方面。在synchronized 和volatile 提供的可见性保证中可能会使用一些特殊指令,即内存栅栏(Memory Barrier)。内存栅栏可以刷新缓存,使缓存无效,刷新硬件的写缓冲,以及停止执行管道。内存栅栏可能同样会对性能带来间接的影响,因为它们将抑制一些编译器优化操作。在内存栅栏中,大多数操作都是不能被重排序的。

在评估同步操作带来的性能影响时,区分有竞争的同步和无竞争的同步非常重要。synchronized 机制针对无竞争的同步进行了优化(volatile 通常是非竞争的),而在编写本书时,一个“快速通道(Fast-Path)”的非竞争同步将消耗20~250个时钟周期。虽然无竞争同步的开销不为零,但它对应用程序整体性能的影响微乎其微,而另一种方法不仅会破坏安全性,而且还会使你(或者后续开发人员)经历非常痛苦的除错过程。

现代的JVM能通过优化来去掉一些不会发生竞争的锁,从而减少不必要的同步开销。如果一个锁对象只能由当前线程访问,那么JVM就可以通过优化来去掉这个锁获取操作,因为

另一个线程无法与当前线程在这个锁上发生同步。例如,JVM通常都会去掉程序清单11-2中的锁获取操作。


一些更完备的JVM 能通过逸出分析(Escape Analysis)来找出不会发布到堆的本地对象引用(因此这个引用是线程本地的)。在程序清单11-3 的getStoogeNames中,对List的唯一引用就是局部变量stooges,并且所有封闭在栈中的变量都会自动成为线程本地变量。在getStoogeNames的执行过程中,至少会将Vector上的锁获取/释放4次,每次调用add或toString时都会执行1次。然而,一个智能的运行时编译器通常会分析这些调用,从而使stooges 及其内部状态不会逸出,因此可以去掉这4次对锁获取操作。

                           程序清单11-3                  可通过锁消除优化去掉的锁获取操作      

public String getStoogeNames(){

List<String>stooges =new Vector<String>();

stooges. add("Moe");

stooges. add("Larry");

stooges. add("Curly");

return stooges. toString();

}

                                                                      

即使不进行逸出分析,编译器也可以执行锁粒度粗化(Lock Coarsening)操作,即将邻近的同步代码块用同一个锁合并起来。在getStoogeNmnes中,如果JVM 进行锁粒度粗化,那么可能会把3个add 与1个toString调用合并为单个锁获取/释放操作,并采用启发式方法来评估同步代码块中采用同步操作以及指令之间的相对开销。②这不仅减少了同步的开销,同时还能使优化器处理更大的代码块,从而可能实现进一步的优化。

不要过度担心非竞争同步带来的开销。这个基本的机制已经非常快了,并且JVM还能进行额外的优化以进一步降低或消除开销。因此,我们应该将优化重点放在那些发生锁竞争的地方。

某个线程中的同步可能会影响其他线程的性能。同步会增加共享内存总线上的通信量,总线的带宽是有限的,并且所有的处理器都将共享这条总线。如果有多个线程竞争同步带宽,那么所有使用了同步的线程都会受到影响。

个编译器优化也被称为锁消除优化(Lock Elision),IBM 的JVM 支持这种优化,并且预期从Java 7 开始在HotSpot中支持。

一个智能的动态编译器会发现该方法总是返回相同的字符串,因此在第一次执行后,把getStoogeNames重新编译为仅返回第一次执行的结果。

 阻塞

非竞争的同步可以完全在JVM中进行处理(Bacon等,1998),而竞争的同步可能需要操作系统的介入,从而增加开销。当在锁上发生竞争时,竞争失败的线程肯定会阻塞。JVM在实现阻塞行为时,可以采用自旋等待(Spin-Waiting,指通过循环不断地尝试获取锁,直到成功)或者通过操作系统挂起被阻塞的线程。这两种方式的效率高低,要取决于上下文切换的开销以及在成功获取锁之前需要等待的时间。如果等待时间较短,则适合采用自旋等待方式,而如果等待时间较长,则适合采用线程挂起方式。有些JVM将根据对历史等待时间的分析数据在这两者之间进行选择,但是大多数JVM在等待锁时都只是将线程挂起。

当线程无法获取某个锁或者由于在某个条件等待或在I/O操作上阻塞时,需要被挂起,在这个过程中将包含两次额外的上下文切换,以及所有必要的操作系统操作和缓存操作:被阻塞的线程在其执行时间片还未用完之前就被交换出去,而在随后当要获取的锁或者其他资源可用时,又再次被切换回来。(由于锁竞争而导致阻塞时,线程在持有锁时将存在一定的开销:当它释放锁时,必须告诉操作系统恢复运行阻塞的线程。)

相关文章:

线程引入的开销

单线程程序既不存在线程调度&#xff0c;也不存在同步开销&#xff0c;而且不需要使用锁来保证数据结构的一致性。在多个线程的调度和协调过程中都需要一定的性能开销&#xff1a;对于为了提升性能而引入的线程来说&#xff0c;并行带来的性能提升必须超过并发导致的开销。 上下…...

学生成绩管理系统

基于springboot vue实现的学生成绩管理系统 主要模块&#xff1a; 1&#xff09;学生模块&#xff1a;我的成绩、成绩统计、申述管理、修改密码 2&#xff09;教师模块&#xff1a;任务管理、对学生班级任务安排、班级学生的成绩查看、申述管理 3&#xff09;管理员模块&…...

什么是关系模型? 关系模型的基本概念

关系模型由IBM公司研究员Edgar Frank Codd于1970年发表的论文中提出&#xff0c;经过多年的发展&#xff0c;已经成为目前最常用、最重要的模型之一。 在关系模型中有一些基本的概念&#xff0c;具体如下。 (1)关系(Relation)。关系一词与数学领域有关&#xff0c;它是集合基…...

shell编程-02-变量作用域

作用域 局部变量&#xff1a;变量只能在函数内部使用 全局变量&#xff1a;变量可以在当前 Shell 进程中使用 环境变量&#xff1a;变量还可以在子进程中使用 局部变量 函数中定义的变量默认是全局变量&#xff0c;在定义时加上local命令&#xff0c;此时该变量就成了局部变…...

C++服务器框架开发6——日志系统LogFormatter/size_t学习

该专栏记录了在学习一个开发项目的过程中遇到的疑惑和问题。 其教学视频见&#xff1a;[C高级教程]从零开始开发服务器框架(sylar) 上一篇&#xff1a;C服务器框架开发5——日志系统LogAppender/IO类“3种stream”/双感叹号 C服务器框架开发6——日志系统logFormatter/size_t学…...

MYSQL实战45讲笔记--深入浅出索引

深入浅出索引 索引的常见模型 索引模型&#xff1a;是哈希表、有序数组和搜索树。 区别&#xff1a; 哈希表是一种以键 - 值&#xff08;key-value&#xff09;存储数据的结构&#xff0c;我们只要输入待查找的值即 key&#xff0c;就可以找到其对应的值即 Value。哈希的思…...

SpringCloudAlibaba:分布式事务之Seata学习

目录 一、分布式事务基础 &#xff08;一&#xff09;事务 &#xff08;二&#xff09;本地事务 &#xff08;三&#xff09;分布式事务 二、Seata概述 1.Seata 的架构包含: 2.其工作原理为: 3.如果需要在 Spring Boot 应用中使用 Seata 进行分布式事务管理,主要步骤为…...

【MySQL数据库 | 第四篇】SQL通用语法及分类

目录 &#x1f914;SQL通用语法&#xff1a; &#x1f60a;语句&#xff1a; &#x1f60a;注释&#xff1a; &#x1f914;SQL语句分类&#xff1a; &#x1f60a;1.DDL语句&#xff1a; &#x1f60a;2.DML语句&#xff1a; &#x1f60a;3.DQL语言&#xff1a; &…...

Liskov替换原则:用了继承,子类就设计对了吗?

前言 上一篇&#xff0c;我们讲了开放封闭原则&#xff0c;想要让系统符合开放封闭原则&#xff0c;最重要的就是我们要构建起相应的扩展模型&#xff0c;所以&#xff0c;我们要面向接口编程。 而大部分的面向接口编程要依赖于继承实现&#xff0c;继承的重要性不如封装和多…...

腾讯云服务器SA3实例AMD处理器CPU网络带宽性能详解

腾讯云AMD服务器SA3实例CPU采用2.55GHz主频的AMD EPYCTM Milan处理器&#xff0c;睿频3.5GHz&#xff0c;搭载最新一代八通道DDR4&#xff0c;内存计算性能稳定&#xff0c;默认网络优化&#xff0c;最高内网收发能力达1900万pps&#xff0c;最高内网带宽可支持100Gbps。腾讯云…...

接口测试常用测试点

接口测试是测试系统组件间接口的一种测试。接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点。测试的重点是要检查数据的交换&#xff0c;传递和控制管理过程&#xff0c;以及系统间的相互逻辑依赖关系等。 测试的策略&#xff1a; 接口测试也是属于功…...

Unity之OpenXR+XR Interaction Toolkit接入HTC Vive解决手柄无法使用的问题

前言 随着Unity版本的不断进化,VR的接口逐渐统一,现在大部分的VR项目都开始使用OpenXR开发了。基于OpenXR,我们可以快速适配HTC,Pico,Oculus,等等设备。 今天我们要说的问题就是,当我们按照官方的标准流程配置完OpenXR后(参考:Unity之OpenXR+XR Interaction Toolkit…...

AC变DC220V变5V小家电电源芯片-AH8652、AH8669

Q: 什么是AH8652和AH8669电源芯片? A: AH8652和AH8669都是AC变DC的电源芯片&#xff0c;适用于将输入的交流电压&#xff08;220V&#xff09;转换为5V直流电压输出&#xff0c;用于小家电的电源模块等应用。 AC变DC220V变5V小家电电源芯片-AH8669 Q: AH8652和AH8669的最大输…...

深度学习笔记之循环神经网络(九)GRU的反向传播过程

深度学习笔记之循环神经网络——GRU的反向传播过程 引言回顾&#xff1a; GRU \text{GRU} GRU的前馈计算过程场景设计 反向传播过程 T \mathcal T T时刻的反向传播过程 T − 1 \mathcal T - 1 T−1时刻的反向传播路径 T − 2 \mathcal T - 2 T−2时刻的反向传播路径 总结 引言 …...

ISFP型人格的性格缺陷和心理问题分析

ISFP人格的特征&#xff1a;性格敏感、为人善良、是具有有创造力的人格类型。他们喜欢追求内心的感受和情感&#xff0c;注重自由、个性和独立。ISFP性人格偏于内向&#xff0c;善于自省&#xff0c;对情绪敏感度高&#xff0c;同理心强。 每种人格类型的都有各自的优势和不足…...

HTML <dir> 标签

HTML5 中不支持 <dir> 标签在 HTML 4 中用于列出目录标题。 实例 目录列表&#xff1a; <dir><li>HTML</li><li>XHTML</li><li>CSS</li> </dir>浏览器支持 IEFirefoxChromeSafariOpera 所有主流浏览器都支持 <…...

leetcode 621. 任务调度器

题目链接&#xff1a;leetcode 621 1.题目 给你一个用字符数组 tasks 表示的 CPU 需要执行的任务列表。其中每个字母表示一种不同种类的任务。任务可以以任意顺序执行&#xff0c;并且每个任务都可以在 1 个单位时间内执行完。在任何一个单位时间&#xff0c;CPU 可以完成一个…...

线程任务的取消

如果外部代码能在某个操作正常完成之前将其置入“完成”状态&#xff0c;那么这个操作就可以称为可取消的(Cancellable)。取消某个操作的原因很多&#xff1a; 用户请求取消。用户点击图形界面程序中的“取消”按钮&#xff0c;或者通过管理接口来发出取消请求,例如JMX (Java …...

在线聊天项目

人事管理项目-在线聊天 后端接口实现前端实现 在线聊天是一个为了方便HR进行快速沟通提高工作效率而开发的功能&#xff0c;考虑到一个公司中的HR并不多&#xff0c;并发量不大&#xff0c;因此这里直接使用最基本的WebSocket来完成该功能。 后端接口实现 要使用WebSocket&…...

动态规划-硬币排成线

动态规划-硬币排成线 1 描述2 样例2.1 样例 1:2.2 样例 2:2.3 样例 3: 3 算法解题思路及实现3.1 算法解题分析3.1.1 确定状态3.1.2 转移方程3.1.3 初始条件和边界情况3.1.4 计算顺序 3.2 算法实现3.2.1 动态规划常规实现3.2.2 动态规划滚动数组 该题是lintcode的第394题&#x…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

ubuntu中安装conda的后遗症

缘由: 在编译rk3588的sdk时&#xff0c;遇到编译buildroot失败&#xff0c;提示如下&#xff1a; 提示缺失expect&#xff0c;但是实测相关工具是在的&#xff0c;如下显示&#xff1a; 然后查找借助各个ai工具&#xff0c;重新安装相关的工具&#xff0c;依然无解。 解决&am…...

WinUI3开发_使用mica效果

简介 Mica(云母)是Windows10/11上的一种现代化效果&#xff0c;是Windows10/11上所使用的Fluent Design(设计语言)里的一个效果&#xff0c;Windows10/11上所使用的Fluent Design皆旨在于打造一个人类、通用和真正感觉与 Windows 一样的设计。 WinUI3就是Windows10/11上的一个…...

【自然语言处理】大模型时代的数据标注(主动学习)

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构D 实验设计E 个人总结 A 论文出处 论文题目&#xff1a;FreeAL: Towards Human-Free Active Learning in the Era of Large Language Models发表情况&#xff1a;2023-EMNLP作者单位&#xff1a;浙江大…...