当前位置: 首页 > news >正文

动态规划-硬币排成线

动态规划-硬币排成线

  • 1 描述
  • 2 样例
    • 2.1 样例 1:
    • 2.2 样例 2:
    • 2.3 样例 3:
  • 3 算法解题思路及实现
    • 3.1 算法解题分析
      • 3.1.1 确定状态
      • 3.1.2 转移方程
      • 3.1.3 初始条件和边界情况
      • 3.1.4 计算顺序
    • 3.2 算法实现
      • 3.2.1 动态规划常规实现
      • 3.2.2 动态规划滚动数组

该题是lintcode的第394题, https://www.lintcode.com/problem/394/,解题思路参考九章侯老师给的建议。

1 描述

有 n 个硬币排成一条线。两个参赛者轮流从右边依次拿走 1 或 2 个硬币,直到没有硬币为止。拿到最后一枚硬币的人获胜。

请判定 先手玩家 必胜还是必败?

若必胜, 返回 true, 否则返回 false.

Lintcode超级VIP年卡 618预售 享买一年送一年

微信加【jiuzhang1104】备注【VIP】即可参加

2 样例

2.1 样例 1:

输入: 1
输出: true

2.2 样例 2:

输入: 4
输出: true
解释:
先手玩家第一轮拿走一个硬币, 此时还剩三个.
这时无论后手玩家拿一个还是两个, 下一次先手玩家都可以把剩下的硬币拿完.

2.3 样例 3:

输入: 5
输出: true
解释:
先手玩家第一轮拿走两枚硬币, 此时还剩三个.
这时无论后手玩家拿一个还是两个, 下一次先手玩家都可以把剩下的硬币拿完.

3 算法解题思路及实现

3.1 算法解题分析

3.1.1 确定状态

这是一个博弈型动态规划类算法题,这中类型的算法解题分析不是从最后一步分析,而是从第一步分析,原因是随着硬币的减少,问题越来越简单。
假设两名选手分别为A和B,A为硬币为N时的先手,而当A拿走一或则两枚硬币之后,B则成为剩余硬币的先手,因此A要保证在自己拿走1或者2枚硬币的时候至少有一种情况是可以赢的。
子问题就转换为:
面对N枚硬币,A作为先手是不是必胜,
则需要知道面对N - 1和N - 2枚硬币B作为先手是不是必胜,
状态:设f[i]表示面对i个石子,是否先手必胜f[i] = True/False

3.1.2 转移方程

状态:设f[i]表示面对i个石子,是否先手必胜f[i] = True/False
在这里插入图片描述

f[i] = (f[i-1] == FALSE OR f[i-2] == FALSE)

3.1.3 初始条件和边界情况

  • 设f[i]表示面对i个石子,是否先手必胜f[i] = True/False
  • f[i] = (f[i-1] == FALSE OR f[i-2] == FALSE)
  • f[0] = FALSE 面对0枚硬币,先手必败
  • f[1] = f[2] = True, 面对1枚或2枚硬币,先手必胜

3.1.4 计算顺序

  • f[0], f[1], f[2], …, f[N]
  • 如果f[N] = true,则先手必胜,否则先手必败
  • 时间负责度为O(N)
  • 空间复杂度为:O(N)

3.2 算法实现

3.2.1 动态规划常规实现

public class Solution {/*** @param n: An integer* @return: A boolean which equals to true if the first player will win*/public boolean firstWillWin(int n) {// write your code hereif (n <= 0) {return false;}if (n <= 2) {return true;}boolean [] f = new boolean[n + 1];f[0] = false;f[1] = true;for (int i = 2; i <= n; i++) {f[i] = (!f[i - 1] || !f[i - 2]);}return f[n];}
}

3.2.2 动态规划滚动数组

public class Solution {/*** @param n: An integer* @return: A boolean which equals to true if the first player will win*/public boolean firstWillWin(int n) {// write your code hereif (n <= 0) {return false;}if (n <= 2) {return true;}boolean [] f = new boolean[2];f[0] = false;f[1] = true;for (int i = 2; i <= n; i++) {f[i % 2] = !(f[(i -1) % 2] && f[(i - 2) % 2]);}return f[n % 2];}
}

相关文章:

动态规划-硬币排成线

动态规划-硬币排成线 1 描述2 样例2.1 样例 1:2.2 样例 2:2.3 样例 3: 3 算法解题思路及实现3.1 算法解题分析3.1.1 确定状态3.1.2 转移方程3.1.3 初始条件和边界情况3.1.4 计算顺序 3.2 算法实现3.2.1 动态规划常规实现3.2.2 动态规划滚动数组 该题是lintcode的第394题&#x…...

有效的括号——力扣20

题目描述 思路 1.判断括号的有效性可以使用「栈」这一数据结构来解决 2.遍历给定的字符串 s。当遇到一个左括号时&#xff0c;我们会期望在后续的遍历中&#xff0c;有一个相同类型的右括号将其闭合。由于后遇到的左括号要先闭合&#xff0c;因此我们可以将这个左括号放入栈顶。…...

【轻量级网络】华为诺亚:VanillaNet

文章目录 0. 前言1. 网络结构2. VanillaNet非线性表达能力增强策略2.1 深度训练2.2 扩展激活函数 3. 总结4. 参考 0. 前言 随着人工智能芯片的发展&#xff0c;神经网络推理速度的瓶颈不再是FLOPs或参数量&#xff0c;因为现代GPU可以很容易地进行计算能力较强的并行计算。相比…...

读写ini配置文件(C++)

文章目录 1、为什么要使用ini或者其它(例如xml,json)配置文件&#xff1f;2、ini文件基本介绍3、ini配置文件的格式4、C读写ini配置文件5、 代码示例6、 配置文件的解析库 文章转载于&#xff1a;https://blog.csdn.net/weixin_44517656/article/details/109014236 1、为什么要…...

Python对接亚马逊电商平台SP-API的一些概念理解准备

❝ 除了第三方服务商&#xff0c;其实亚马逊卖家本身也可以通过和SP-API的对接&#xff0c;利用程序来自动化亚马逊店铺销售运营管理中很多环节的工作&#xff0c;简单的应用比如可以利用SP-API的对接&#xff0c;实现亚马逊卖家后台各类报表的定期自动下载以及数据分析整理工…...

[Halcon3D] 主流的3D光学视觉方案及原理

&#x1f4e2;博客主页&#xff1a;https://loewen.blog.csdn.net&#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;本文由 丶布布原创&#xff0c;首发于 CSDN&#xff0c;转载注明出处&#x1f649;&#x1f4e2;现…...

Go Web下gin框架使用(二)

〇、gin 路由 Gin是一个用于构建Web应用程序的Go语言框架&#xff0c;它具有简单、快速、灵活的特点。在Gin中&#xff0c;可以使用路由来定义URL和处理程序之间的映射关系。 r : gin.Default()// 访问 /index 这个路由// 获取信息r.GET("/index", func(c *gin.Con…...

算法笔记-线段树合并

线段树合并 前置知识&#xff1a;权值线段树、动态开点 将两棵线段树的信息合并成一棵线段树。 可以新建一颗线段树保存原来两颗线段树的信息&#xff0c;也可以将第二棵线段树维护的信息加到第一棵线段树上。 前者的空间复杂度较高&#xff0c;如果合并之前的线段树不会再用…...

Fiddler抓取IOS数据包实践教程

Fiddler是一个http协议调试代理工具,它能够记录并检查所有你的电脑和互联网之间的http通讯,设置断点,查看所有的“进出”Fiddler的数据(指cookie,html,js,css等文件)。 本章教程,主要介绍如何利用Fiddler抓取IOS数据包相关教程。 目录 一、打开Fiddler监听端口 二、配置网…...

Ansible基础4——变量、机密、事实

文章目录 一、变量二、机密2.1 创建加密文件2.2 查看加密文件2.3 编辑加密文件内容2.4 加密现有文件2.5 解密文件2.6 更改加密密码 三、事实3.1 收集展示事实3.2 展示某个结果3.3 新旧事实命令3.4 关闭事实3.5 魔法变量 一、变量 常设置的变量&#xff1a; 要创建的用户要安装的…...

React实现Vue的watch监听属性

在 Vue 中可以简单地使用 watch 来监听数据的变化&#xff0c;还能获取到改变前的旧值&#xff0c;而在 React 中是没有 watch 的。 React中比较复杂&#xff0c;但是我们如果想在 React 中实现一个类似 Vue 的 watch 监听属性&#xff0c;也不是没有办法。 在React类组件中实…...

axios、跨域与JSONP、防抖和节流

文章目录 一、axios1、什么是axios2、axios发起GET请求3、axios发起POST请求4、直接使用axios发起请求 二、跨域与JSONP1、了解同源策略和跨域2、JSONP&#xff08;1&#xff09;实现一个简单的JSONP&#xff08;2&#xff09;JSONP的缺点&#xff08;3&#xff09;jQuery中的J…...

macOS Ventura 13.5beta2 (22G5038d)发布

系统介绍 黑果魏叔 6 月 1 日消息&#xff0c;苹果今日向 Mac 电脑用户推送了 macOS 13.5 开发者预览版 Beta 2 更新&#xff08;内部版本号&#xff1a;22G5038d&#xff09;&#xff0c;本次更新距离上次发布隔了 12 天。 macOS Ventura 带来了台前调度、连续互通相机、Fac…...

jwt----介绍,原理

token&#xff1a;服务的生成的加密字符串&#xff0c;如果存在客户端浏览器上&#xff0c;就叫cookie -三部分&#xff1a;头&#xff0c;荷载&#xff0c;签名 -签发&#xff1a;登录成功&#xff0c;签发 -认证&#xff1a;认证类中认证 # jwt&…...

Three.js--》实现3d水晶小熊模型搭建

目录 项目搭建 初始化three.js基础代码 加载背景纹理 加载小熊模型 今天简单实现一个three.js的小Demo&#xff0c;加强自己对three知识的掌握与学习&#xff0c;只有在项目中才能灵活将所学知识运用起来&#xff0c;话不多说直接开始。 项目搭建 本案例还是借助框架书写…...

《阿里大数据之路》研读笔记(1)

首先先看到OLAP和OLTP的区别&#xff1a; OLTP(Online transaction processing):在线/联机事务处理。典型的OLTP类操作都比较简单&#xff0c;主要是对数据库中的数据进行增删改查&#xff0c;操作主体一般是产品的用户或者是操作人员。 OLAP(Online analytical processing):…...

Logback 日志框架详解

一、Logback 简介 Logback 是一个日志框架&#xff0c;旨在成为 log4j 的替代品。它由 Ceki Glc 创建并维护&#xff0c;是一款开源的日志框架&#xff0c;是 slf4j&#xff08;Simple Logging Facade for Java&#xff09;的实现。相比于 log4j&#xff0c;Logback 具有更高的…...

BIO、NIO、AIO 有什么区别?

BIO (Blocking I/O)&#xff1a; Block IO 同步阻塞式 IO &#xff0c;传统 IO&#xff0c;特点是模式简单、使用方便&#xff0c;并发处理能力低。 同步阻塞 I/O 模式&#xff0c;数据的读取写入必须阻塞在一个线程内等待其完成&#xff0c;在活动连接数不是特别高&#xff08…...

nginx和tomcat负载均衡、静态分离

tomcat重要目录 bin 存放启动和关闭Tomcat脚本conf存放Tomcat不同的配置文件doc存放Tomcat文档lib存放Tomcat运行需要的库文件logs存放Tomcat执行时的log文件src存放Tomcat的源代码webappsTomcat的主要Web发布目录work存放jsp编译后产生的class文件 nginx负载均衡原理 nginx实…...

用AI写出的高考作文!

今天是6月7日&#xff0c;又到了每一年高考的日子。小灰自己参加高考是在2004年&#xff0c;距离现在已经将近20年&#xff0c;现在回想起来&#xff0c;真的是恍如隔世。 今天高考语文的作文题是什么呢&#xff1f; 全国甲卷的题目是&#xff1a;人技术时间 人们因技术发展得以…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...