ThreadPoolExecutor线程池
文章目录
- 一、ThreadPool线程池状态
- 二、ThreadPoolExecutor构造方法
- 三、Executors
- 3.1 固定大小线程池
- 3.2 带缓冲线程池
- 3.3 单线程线程池
- 四、ThreadPoolExecutor
- 4.1 execute(Runnable task)方法使用
- 4.2 submit()方法
- 4.3 invokeAll()
- 4.4 invokeAny()
- 4.5 shutdown()
- 4.6 shutdownNow()
- 总结
一、ThreadPool线程池状态
ThreadPoolExecutor
使用int
的高3位
来表示线程池状态,低29位表示线程数量
从数字上比较,TERMINATED>TIDYING>STOP>SHUTDOWN>RUNNING
,最高的1位是1是代表的是负数
这些信息存储在一个原子变量ctl中,目的是将线程池状态与线程个数合二为一,这样就可以用一次CAS原子操作进行赋值
c为旧值,ctlOf返回结果为新值
ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
rs(running state)为高3位代表线程池状态 wc(worker count) 为低29位代表线程个数
private static int ctlOf(int rs,int wc){return rs | wc;}
二、ThreadPoolExecutor构造方法
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler)
ThreadPoolExecutor7大核心参数
corePoolSize
:核心线程数目(最多保留的线程数)
maximumPoolSize
:最大线程数目
keepAliveTime
:生存时间(针对非核心线程)
unit
:时间单位(针对非核心线程)
workQueue
:阻塞队列
threadFactory
:线程工厂
handler
:拒接策略
非核心线程数=maximumPoolSize-corePoolSize
拒绝策略
- AbortPolicy:让调用者抛出RejectedException异常(
默认拒绝策略
) - CallerRunsPolicy:让调用者运行任务
- DiscardPolicy:放弃本次任务
- DiscardOldestPolicy:放弃队列中最早的任务,本任务会取而代之
三、Executors
3.1 固定大小线程池
public static ExecutorService newFixedThreadPool(int nThreads) {return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());}
特点
核心线程数=最大线程数
,因此不需要超时时间- 阻塞队列是无界的,可以放任意数量的任务
3.2 带缓冲线程池
public static ExecutorService newCachedThreadPool() {return new ThreadPoolExecutor(0, Integer.MAX_VALUE,60L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>());}
特点
1. 核心线程=0,最大线程数=Integer的最大值,非核心线程空闲的生存时间是60S
2. 全员都是非核心线程
3. 非核心线程可以无线创建
4. SynchronousQueue实现特点,它没有容量,没有线程来取是放不进去的(一手交钱,一手交货)
3.3 单线程线程池
public static ExecutorService newSingleThreadExecutor() {return new FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>()));}
区别
- 自己创建一个单线程串行执行任务,如果执行任务失败而终止那么没有任何补救措施,而线程池还会重新创建一个线程,保证线程池的工作
四、ThreadPoolExecutor
4.1 execute(Runnable task)方法使用
特点
:execute(Runnable task)方法执行后不会返回结果,若我们执行完方法后需要结果进行运算则不适用
public static void main(String[] args) throws Exception{ExecutorService pool = Executors.newFixedThreadPool(1);//方式一pool.execute(new Runnable() {@Overridepublic void run() {//执行的业务逻辑}});//方式二:使用lambda表达式简化pool.execute(() -> {//执行的业务逻辑});}
4.2 submit()方法
特点
:我们执行完submit方法后可以将处理结果进行返回
public static void main(String[] args) throws Exception{ExecutorService pool = Executors.newFixedThreadPool(1);//方式一Future<返回结果类型> taskResult=pool.submit(new Callable<返回结果类型>() {@Overridepublic 返回结果类型 call() {//执行的业务逻辑,后将处理结果返回return null;}});//拿到返回的结果taskResult.get();//方式二:使用lambda表达式简化Future<返回结果类型> taskResult=pool.submit(() -> {//执行的业务逻辑return null;});//拿到返回的结果taskResult.get();}
4.3 invokeAll()
特点
:执行任务以集合的方式,并且返回结果集合
public static void main(String[] args) throws Exception{ExecutorService pool = Executors.newFixedThreadPool(1);List<Future<Object>> tasks = pool.invokeAll(Arrays.asList(() -> {//执行逻辑返回结果return 1;},() -> {//执行逻辑返回结果return 2;}));for (Future<Object> task : tasks) {System.out.println(task.get());}}
4.4 invokeAny()
特点
:将任务集合中所有的任务进行执行,只返回第一个执行完毕的任务结果
Integer res = pool.invokeAny(Arrays.asList(() -> {return 1;},() -> {return 2;}));System.out.println(res);
4.5 shutdown()
特点
:
- 将线程池状态变为
SHUTDOWN
- 不会接受新任务
- 但已提交的任务会执行完
- 此方法不会阻塞调用线程的执行
4.6 shutdownNow()
特点
:
- 线程池状态变为
STOP
- 不会接收新任务
- 会将队列中的任务返回
- 并用interrupt的方式终端正在执行的任务
总结
完
相关文章:

ThreadPoolExecutor线程池
文章目录 一、ThreadPool线程池状态二、ThreadPoolExecutor构造方法三、Executors3.1 固定大小线程池3.2 带缓冲线程池3.3 单线程线程池 四、ThreadPoolExecutor4.1 execute(Runnable task)方法使用4.2 submit()方法4.3 invokeAll()4.4 invokeAny()4.5 shutdown()4.6 shutdownN…...

chatgpt赋能python:Python实践:如何升级pip
Python实践:如何升级pip Python作为一门高效的脚本语言,被广泛应用于数据分析、人工智能、Web开发等领域。而pip则是Python的包管理工具,是开发Python应用的必备工具。但是pip在使用过程中,有时候会出现版本不兼容或者出现漏洞等…...

【JavaEE进阶】mybatis
目录: 一、Mybatis是什么 三个映射关系如下图: 二、mybatis的使用(前置工作简单案例) 第一步:导入MAVEN依赖 第二步: 在spring项目当中新建数据源 第三步:新建一个实体类,是和…...

Redis的大key
什么是 redis 的大 key redis 的大 key 不是指存储在 redis 中的某个 key 的大小超过一定的阈值,而是该 key 所对应的 value 过大对于 string 类型来说,一般情况下超过 10KB 则认为是大 key;对于set、zset、hash 等类型来说,一般…...

MMPretrain
title: mmpretrain实战 date: 2023-06-07 16:04:01 tags: [image classification,mmlab] mmpretrain实战 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ccTl9bOl-1686129437336)(null)] 主要讲解了安装,还有使用教程.安装教程直接参考官网.下面讲…...

栈和队列(数据结构刷题)[一]-python
文章目录 前言一、原理介绍二、用栈实现队列1.操作2.思路 三、关于面试考察栈里面的元素在内存中是连续分布的么? 前言 提到栈和队列,大家可能对它们的了解只停留在表面,再深入一点,好像知道又好像不知道的感觉。本文我将从底层实…...

【备战秋招】JAVA集合
集合 前言 一方面, 面向对象语言对事物的体现都是以对象的形式,为了方便对多个对象 的操作,就要 对对象进行存储。 另一方面,使用Array存储对象方面具有一些弊端,而Java 集合就像一种容器,可以动态地把多…...

setState详解
this. setState( [partialState], [callback]) 1.[partialState] :支持部分状态更改 this, setState({ x:100 //不论总共有多少状态,我们只修改了x,其余的状态不动 });callback :在状态更改/视图更新完毕后触发执行,也可以说只要执行了setS…...

Qt5.12.6配置Android Arm开发环境(windows)
1. 安装jdk1.8 2.安装Android Studio 并安装 SDK 与NDK SDK Tools 选择 26.0.3 SDK Platform 选择 Android SDK Platform 26 NDK选择19版本 安卓ARM环境配置成功如下: JDK1.8 , SDK 26 , NDK 19 在安装QT时要选择 ARMv7(32位CPU)与ARM64-v8a(64位CPU) 选择支持android平台…...

七、进程程序替换
文章目录 一、进程程序替换(一)概念(二)为什么程序替换(三)程序替换的原理(四)如何进行程序替换1. execl2. 引入进程创建——子进程执行程序替换,会不会影响父进程呢? &…...

C++核心编程——详解运算符重载
文章目录💬 一.运算符重载基础知识①基本概念②运算符重载的规则③运算符重载形式④运算符重载建议 二.常用运算符重载①左移(<<)和右移(>>)运算符重载1️⃣重载后函数参数是什么?2️⃣重载的函数返回类型是什么?3️⃣重载为哪种…...

2023年前端面试汇总-CSS
1. CSS基础 1.1. CSS选择器及其优先级 对于选择器的优先级: 1. 标签选择器、伪元素选择器:1; 2. 类选择器、伪类选择器、属性选择器:10; 3. id 选择器:100; 4. 内联样式:1000&a…...

Java调用Pytorch实现以图搜图(附源码)
Java调用Pytorch实现以图搜图 设计技术栈: 1、ElasticSearch环境; 2、Python运行环境(如果事先没有pytorch模型时,可以用python脚本创建模型); 1、运行效果 2、创建模型(有则可以跳过…...

【EasyX】实时时钟
目录 实时时钟1. 绘制静态秒针2. 秒针的转动3. 根据实际时间转动4. 添加时针和分针5. 添加表盘刻度 实时时钟 本博客介绍利用EasyX实现一个实时钟表的小程序,同时学习时间函数的使用。 本文源码可从github获取 1. 绘制静态秒针 第一步定义钟表的中心坐标center&a…...

基于XC7Z100的PCIe采集卡(GMSL FMC采集卡)
GMSL 图像采集卡 特性 ● PCIe Gen2.0 X8 总线; ● 支持V4L2调用; ● 1路CAN接口; ● 6路/12路 GMSL1/2摄像头输入,最高可达8MP; ● 2路可定义相机同步触发输入/输出; 优势 ● 采用PCIe主卡与FMC子…...

Kibana:使用 Kibana 自带数据进行可视化(一)
在今天的练习中,我们将使用 Kibana 自带的数据来进行一些可视化的展示。希望对刚开始使用 Kibana 的用户有所帮助。 前提条件 如果你还没有安装好自己的 Elastic Stack,你可以参考如下的视频来开启 Elastic Stack 并进行下面的练习。你可以开通阿里云检…...

MySQL数据库基础 07
第七章 单行函数 1. 函数的理解1.1 什么是函数1.2 不同DBMS函数的差异1.3 MySQL的内置函数及分类 2. 数值函数2.1 基本函数2.2 角度与弧度互换函数2.3 三角函数2.4 指数与对数2.5 进制间的转换 3. 字符串函数4. 日期和时间函数4.1 获取日期、时间 4.2 日期与时间戳的转换 4.3 获…...
JVM | JVM垃圾回收
JVM | JVM垃圾回收 1、堆空间的基本结构2、内存分配和回收原则2.1、对象优先在 Eden 区分配2.2、大对象直接进入老年代2.3、长期存活的对象将进入老年代2.4、主要进行 gc 的区域2.5、空间分配担保3、死亡对象判断方法3.1、引用计数法3.2、可达性分析算法3.3、引用类型总结3.4、…...

avive零头撸矿
Avive 是一个透明的、自下而上替代自上而下的多元网络,旨在克服当前生态系统的局限性,实现去中心化社会。 aVive:一个基于 SBT 和市场的 deSoc,它使 dapps 能够与分散的位置 oracle 和 SBT 关系进行互操作。您的主权社交网络元宇宙…...

openGauss5.0之学习环境 Docker安装
文章目录 0.前言1. 准备软硬件安装环境1.1 软硬件环境要求1.2 修改操作系统配置1.2.1 关闭操作系统防火墙 1.3 设置字符集参数1.4 设置时区和时间(可选)关闭swap交换内存1.5 关闭RemoveIPC1.6 关闭HISTORY记录 2. 容器安装2. 1支持的架构和操作系统版本2…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL
ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...

Axure 下拉框联动
实现选省、选完省之后选对应省份下的市区...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...