当前位置: 首页 > news >正文

贪心算法part2 | ● 122.买卖股票的最佳时机II ● 55. 跳跃游戏 ● 45.跳跃游戏II

文章目录

  • 122.买卖股票的最佳时机II
    • 思路
    • 思路代码
    • 官方题解
    • 困难
  • 55. 跳跃游戏
    • 思路
    • 思路代码
    • 官方题解
    • 代码
    • 困难
  • 45.跳跃游戏II
    • 思路
    • 思路代码
    • 困难
  • 今日收获


122.买卖股票的最佳时机II

122.买卖股票的最佳时机II

思路

局部最优:将当天价格和前一天比较,价格涨了就买入,价格降了就忽略。

思路代码

func maxProfit(prices []int) int {res:=0pre:=prices[0]for i:=1;i<len(prices);i++{if prices[i]>pre{res+=(prices[i]-pre)}pre=prices[i]}return res
}

官方题解

官方亦是如此。

困难

不需要第一天,所以循环从第二天也就是1开始。


55. 跳跃游戏

55.跳跃游戏

思路

局部最优:每次选取能覆盖的最大范围,说明范围以内的

思路代码

func canJump(nums []int) bool {cover:=0for i:=0;i<len(nums);i++{for j:=i;j<=cover;j++{if cover<i+nums[i]{cover=i+nums[i]}if cover>=len(nums)-1{return true}}}return false
}

官方题解

那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!

每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。

贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。

局部最优推出全局最优,找不出反例
i 每次移动只能在 cover 的范围内移动,每移动一个元素,cover 得到该元素数值(新的覆盖范围)的补充,让 i 继续移动下去。
而 cover 每次只取 max(该元素数值补充后的范围, cover 本身范围)。
如果 cover 大于等于了终点下标,直接 return true 就可以了。

一个循环,时间复杂度更优。

代码

func canJump(nums []int) bool {cover := 0n := len(nums)-1for i := 0; i <= cover; i++ { // 每次与覆盖值比较cover = max(i+nums[i], cover) //每走一步都将 cover 更新为最大值if cover >= n {return true}}return false
}
func max(a, b int ) int {if a > b {return a}return b
}

困难

让i每次只能在cover内移动,每次循环实时更新cover的值,也就是循环的范围在循环的同时就可以扩大,不需要两层循环。


45.跳跃游戏II

45.跳跃游戏II

思路

记录下一步的覆盖范围
局部最优:走到当前覆盖范围后步数加一并更新当前覆盖范围。(每一步都走到最远)

思路代码

func jump(nums []int) int {cover:=0res:=0nextcover:=0for i:=0;i<len(nums)-1;i++{if nextcover<nums[i]+i{nextcover=nums[i]+i}if i==cover{res++cover=nextcover}}return res
}

困难

优化后只需要走到倒数第二个位置即可。因为题目说必定能到达终点。


今日收获

对贪心算法的局部最优有了更深的认识。
例如跳跃问题这种每次更新范围的问题,使用一个循环,贪心找到每一步覆盖的最大范围。

相关文章:

贪心算法part2 | ● 122.买卖股票的最佳时机II ● 55. 跳跃游戏 ● 45.跳跃游戏II

文章目录 122.买卖股票的最佳时机II思路思路代码官方题解困难 55. 跳跃游戏思路思路代码官方题解代码困难 45.跳跃游戏II思路思路代码困难 今日收获 122.买卖股票的最佳时机II 122.买卖股票的最佳时机II 思路 局部最优&#xff1a;将当天价格和前一天比较&#xff0c;价格涨…...

[C++]异常笔记

我不怕练过一万种腿法的对手,就怕将一种腿法 练一万次的对手。 什么是C的异常 在C中&#xff0c;异常处理通常使用try-catch块来实现。try块用于包含可能会抛出异常的代码&#xff0c;而catch块用于捕获并处理异常。当异常被抛出时&#xff0c;程序会跳过try块中未执行…...

浅谈一级机电管道设计中的压力与介质温度

管道设计是工程设计中的一个非常重要的部分&#xff0c;管道的设计需要考虑到许多因素&#xff0c;其中就包括管道设计压力分类和介质温度分类。这两个因素是在设计管道时必须非常严格考虑的&#xff0c; 首先是管道设计压力分类。在管道设计中&#xff0c;根据工作要求和要传输…...

Docker网络模型(八)使用 macvlan 网络

使用 macvlan 网络 一些应用程序&#xff0c;特别是传统的应用程序或监控网络流量的应用程序&#xff0c;期望直接连接到物理网络。在这种情况下&#xff0c;你可以使用 macvlan 网络驱动为每个容器的虚拟网络接口分配一个MAC地址&#xff0c;使其看起来像一个直接连接到物理网…...

控制视图内容的位置

文本域中的提示内容在默认情况下是垂直居中的&#xff0c;要改变文本在文本域中的位置&#xff0c;可以使用android:gravity来实现。 利用android:gravity可以指定如何在视图中放置视图内容&#xff0c;例如&#xff0c;如何在文本域中放置文本。 如果希望视图文本显示在上方&a…...

【分布式系统与一致性协议】

分布式系统与一致性协议 CAP原理APCPCA总结BASE理论 一致性拜占庭将军问题 分布式系统是一个硬件或软件组件分布在不同的网络计算机上&#xff0c;彼此之间仅仅通过消息传递进行通信和协调的系统。 分布式系统的设计目标一般包含如下&#xff1a; 可用性&#xff1a;可用性是分…...

音视频领域的未来发展方向展望

文章目录 音视频领域的未来发展方向全景音视频技术虚拟现实和增强现实的区别 人工智能技术可视化智能分析智能语音交互图像识别和视频分析技术 语音处理智能推荐技术远程实时通信 流媒体技术未来方向 音视频领域的未来发展方向 全景音视频技术&#xff1a;全景音视频技术是近年…...

时间同步/集群时间同步/在线/离线

目录 一、能够连接外网 二、集群不能连接外网--同步其它服务器时间 一、能够连接外网 1.介绍ntp时间协议 NTP&#xff08;Network Time Protocol&#xff09;网络时间协议&#xff0c;是用来使计算机时间同步的一种协议&#xff0c;它可以使计算机对其服务器或时钟源做同步…...

基于BP神经网络对MNIST数据集检测识别(numpy版本)

基于BP神经网络对MNIST数据集检测识别 1&#xff0e;作者介绍2&#xff0e;BP神经网络介绍2.1 BP神经网络 3&#xff0e;BP神经网络对MNIST数据集检测实验3.1 读取数据集3.2 前向传播3.3 损失函数3.4 构建神经网络3.5 训练3.6 模型推理 4&#xff0e;完整代码 1&#xff0e;作者…...

HTML5-创建HTML文档

HTML5中的一个主要变化是&#xff1a;将元素的语义与元素对其内容呈现结果的影响分开。从原理上讲这合乎情理。HTML元素负责文档内容的结构和含义&#xff0c;内容的呈现则由应用于元素上的CSS样式控制。下面介绍最基础的HTML元素&#xff1a;文档元素和元数据元素。 一、构建…...

Vue中Axios的封装和API接口的管理

一、axios的封装 在vue项目中&#xff0c;和后台交互获取数据这块&#xff0c;我们通常使用的是axios库&#xff0c;它是基于promise的http库&#xff0c;可运行在浏览器端和node.js中。他有很多优秀的特性&#xff0c;例如拦截请求和响应、取消请求、转换json、客户端防御XSR…...

MLIR面试题

1、请简要解释MLIR的概念和用途&#xff0c;并说明MLIR在编译器领域中的重要性。 MLIR(Multi-Level Intermediate Representation)是一种多级中间表示语言&#xff0c;提供灵活、可扩展和可优化的编译器基础设施。MLIR的主要目标是为不同的编程语言、领域专用语言(DSL)和编译器…...

***杨辉三角_yyds_LeetCode_python***

1.题目描述&#xff1a; 给定一个非负整数 numRows&#xff0c;生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 示例 1: 输入: numRows 5 输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]] 示例 2: 输入: numRows …...

Mac使用DBeaver连接达梦数据库

Mac使用DBeaver连接达梦数据库 下载达梦驱动包 达梦数据库 在下载页面随便选择一个系统并下载下来。 下载下来的是zip的压缩包解压出来就是一个ISO文件&#xff0c;然后我们打开ISO文件进入目录&#xff1a;/dameng/source/drivers/jdbc 进入目录后找到这几个驱动包&#x…...

spring.expression 随笔0 概述

0. 我只是个普通码农&#xff0c;不值得挽留 Spring SpEL表达式的使用 常见的应用场景:分布式锁的切面借助SpEL来构建key 比较另类的的应用场景:动态校验 个人感觉可以用作控制程序的走向&#xff0c;除此之外&#xff0c;spring的一些模块的自动配置类&#xff0c;也会在Cond…...

从Cookie到Session: Servlet API中的会话管理详解

文章目录 一. Cookie与Session1. Cookie与Session2. Servlet会话管理操作 二. 登录逻辑的实现 一. Cookie与Session 1. Cookie与Session 首先, 在学习过 HTTP 协议的基础上, 我们需要知道 Cookie 是 HTTP 请求报头中的一个关键字段, 本质上是浏览器在本地存储数据的一种机制,…...

docker数据管理与网络通信

一、管理docker容器中数据 管理Docker 容器中数据主要有两种方式:数据卷(Data Volumes)和数据卷容器( DataVolumes Containers) 。 1、 数据卷 数据卷是一个供容器使用的特殊目录&#xff0c;位于容器中。可将宿主机的目录挂载到数据卷上&#xff0c;对数据卷的修改操作立刻…...

怎么查询电脑的登录记录及密码更改情况?

源头是办公室公用的电脑莫名其妙打不开了&#xff0c;问别人也都不知道密码是多少 因为本来就没设密码啊&#xff01;&#xff08;躺倒&#xff09; 甚至已经想好了如果是50万想攻破电脑&#xff0c;被po抓住要怎么花这笔钱了 是我想太多 当然最后也没解决&#xff0c;莫名…...

《三》TypeScript 中函数的类型

TypeScript 允许指定函数的参数和返回值的类型。 函数声明的类型定义&#xff1a;function 函数名(形参: 形参类型, 形参: 形参类型, ...): 返回值类型 {} function sum(x: number, y: number): number {return x y } sum(1, 2) // 正确 sum(1, 2, 3) // 错误。输入多余的或者…...

深入学习 Mysql 引擎 InnoDB、MyISAM

tip&#xff1a;作为程序员一定学习编程之道&#xff0c;一定要对代码的编写有追求&#xff0c;不能实现就完事了。我们应该让自己写的代码更加优雅&#xff0c;即使这会费时费力。 &#x1f495;&#x1f495; 推荐&#xff1a;体系化学习Java&#xff08;Java面试专题&#…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅!

【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅! 🌱 前言:一棵树的浪漫,从数组开始说起 程序员的世界里,数组是最常见的基本结构之一,几乎每种语言、每种算法都少不了它。可你有没有想过,一组看似“线性排列”的有序数组,竟然可以**“长”成一棵平衡的二…...