线性代数行列式的几何含义
行列式可以看做是一系列列向量的排列,并且每个列向量的分量可以理解为其对应标准正交基下的坐标。
行列式有非常直观的几何意义,例如:
二维行列式按列向量排列依次是 a \mathbf{a} a和 b \mathbf{b} b,可以表示 a \mathbf{a} a和 b \mathbf{b} b构成的平行四边形的面积
∣ a b ∣ = ∣ ( x a x + y a y ) ( x b x + y b y ) ∣ = x a x b ∣ x x ∣ + x a y b ∣ x y ∣ + y a x b ∣ y x ∣ + y a y b ∣ y y ∣ = x a x b ( 0 ) + x a y b ( + 1 ) + y a x b ( − 1 ) + y a y b ( 0 ) = x a y b − y a x b . \begin{aligned} |\mathbf{a b}| & =\left|\left(x_{a} \mathbf{x}+y_{a} \mathbf{y}\right)\left(x_{b} \mathbf{x}+y_{b} \mathbf{y}\right)\right| \\ & =x_{a} x_{b}|\mathbf{x} \mathbf{x}|+x_{a} y_{b}|\mathbf{x y}|+y_{a} x_{b}|\mathbf{y} \mathbf{x}|+y_{a} y_{b}|\mathbf{y} \mathbf{y}| \\ & =x_{a} x_{b}(0)+x_{a} y_{b}(+1)+y_{a} x_{b}(-1)+y_{a} y_{b}(0) \\ & =x_{a} y_{b}-y_{a} x_{b} . \end{aligned} ∣ab∣=∣(xax+yay)(xbx+yby)∣=xaxb∣xx∣+xayb∣xy∣+yaxb∣yx∣+yayb∣yy∣=xaxb(0)+xayb(+1)+yaxb(−1)+yayb(0)=xayb−yaxb.

三维行列式按列向量排列依次是 a \mathbf{a} a, b \mathbf{b} b和 c \mathbf{c} c,可以表示 a \mathbf{a} a, b \mathbf{b} b和 b \mathbf{b} b构成的平行六面体的体积
∣ a b c ∣ = ∣ ( x a x + y a y + z a z ) ( x b x + y b y + z b z ) ( x c x + y c y + z c z ) ∣ = x a y b z c − x a z b y c − y a x b z c + y a z b x c + z a x b y c − z a y b x c . \begin{aligned} |\mathbf{a b c}| & =\left|\left(x_{a} \mathbf{x}+y_{a} \mathbf{y}+z_{a} \mathbf{z}\right)\left(x_{b} \mathbf{x}+y_{b} \mathbf{y}+z_{b} \mathbf{z}\right)\left(x_{c} \mathbf{x}+y_{c} \mathbf{y}+z_{c} \mathbf{z}\right)\right| \\ & =x_{a} y_{b} z_{c}-x_{a} z_{b} y_{c}-y_{a} x_{b} z_{c}+y_{a} z_{b} x_{c}+z_{a} x_{b} y_{c}-z_{a} y_{b} x_{c} . \end{aligned} ∣abc∣=∣(xax+yay+zaz)(xbx+yby+zbz)(xcx+ycy+zcz)∣=xaybzc−xazbyc−yaxbzc+yazbxc+zaxbyc−zaybxc.

相关文章:
线性代数行列式的几何含义
行列式可以看做是一系列列向量的排列,并且每个列向量的分量可以理解为其对应标准正交基下的坐标。 行列式有非常直观的几何意义,例如: 二维行列式按列向量排列依次是 a \mathbf{a} a和 b \mathbf{b} b,可以表示 a \mathbf{a} a和…...
python用flask将视频显示在网页上
注意我们的return返回值必须是以下之一,否则会报错 from flask import Flask, render_template, Response import cv2app Flask(__name__)app.route(/) def index():return render_template(index.html)def gen(camera):while True:success, image camera.read(…...
【数据挖掘】时间序列教程【一】
第一章 说明 对于时间序列的研究,可以追溯到19世纪末和20世纪初。当时,许多学者开始对时间相关的经济和社会现象进行研究,尝试发现其规律和趋势。其中最早的时间序列研究可以追溯到法国经济学家易贝尔(Maurice Allais)…...
优化索引粒度参数提升ClickHouse查询性能
当对高基数列进行过滤查询时,总是希望尽可能跳过更多的行。否则需要处理更多数据、需要更多资源。ClickHouse缺省在MergeTree表读取8192行数据块,但我们可以在创建表时调整该index_granularity 参数。本文通过示例说明如何调整该参数优化查询性能。 inde…...
selenium\webdriver\remote\errorhandler.py:242: SessionNotCreatedException问题解决
报错信息: raise exception_class(message, screen, stacktrace) E selenium.common.exceptions.SessionNotCreatedException: Message: session not created: This version of ChromeDriver only supports Chrome version 112 E Current browser versi…...
MySQL 备份与恢复
MySQL 备份与恢复 一、数据库备份的分类1.1 数据备份的重要性1.2 数据库备份的分类1.2.1 从物理与逻辑的角度,分为物理备份和逻辑备份1.2.2 从数据库的备份策略角度,分为完全备份,差异备份和增量备份1.2.3 常见的备份方法 二、MySQL完全备份与…...
js中改变this指向的三种方式
js中改变this指向的三种方式 1、call方法2、apply方法3、bind方法 1、call方法 使用 call 方法调用函数,同时指定函数中 this 的值,使用方法如下代码所示: <script>const obj {uname: 刘德华}function fn(x, y) {console.log(this) …...
小程序中如何进行数据传递和通信
103. 小程序中如何进行数据传递和通信? 1. 使用页面参数传递数据: 在小程序中,可以通过页面参数来传递数据。当跳转到一个新页面时,可以将需要传递的数据作为参数传入,然后在目标页面的onLoad函数中获取参数。 示例…...
Vue3项目中引入ElementUI使用详解
目录 Vue3项目中引入 ElementUI1.安装2.引入2.1 全局引入2.2 按需引入viteWebpack 3.使用 Vue3项目中引入 ElementUI ElementUI是一个强大的PC端UI组件框架,它不依赖于vue,但是却是当前和vue配合做项目开发的一个比较好的ui框架,其包含了布局…...
计算机启动
按下主机上的 power 键后,第一个运行的软件是 BIOS,BIOS 全称叫 Base Input & Output System,即基本输入输出系统。 (8086的1MB内存) 地址 0~0x9FFFF 处是 DRAM,顶部的 0xF0000~0xFFFFF&am…...
Unity学习笔记--EventSystem事件系统在使用上需要注意的地方(很基础,但是很多人会忘记!!!)
目录 前言代码Unity 场景配置运行报错分析解决办法拓展(预告) 前言 之前有写过一篇关于事件系统实现以及使用的文章 Unity学习笔记–C#事件系统的实现与应用 最近在使用的时候遇到了一些问题,所以在此记录下,也为看到这篇文章的人…...
高手必备:JVM调优的常用命令和参数一网打尽!
大家好,我是小米!在今天的技术分享中,我将和大家一起探讨JVM调优中的常用命令和参数。作为一名热爱技术的小伙伴,希望通过本篇文章的分享,能够帮助大家更好地理解和掌握JVM调优的方法和技巧。 JVM的结构 首先&#x…...
Uniapp 开发 ①(快速上手)
作者 : SYFStrive 博客首页 : HomePage 📜: UNIAPP开发 📌:个人社区(欢迎大佬们加入) 👉:社区链接🔗 📌:觉得文章不错可以点点关注 Ǵ…...
【数据库原理与实践】知识点归纳(下)
第6章 规范化理论 一、关系模式设计中存在的问题 关系、关系模式、关系数据库、关系数据库的模式 关系模式看作三元组:R < U,F >,当且仅当U上的一个关系r满足F时,r称为关系模式R < U,F >的一个关系 第一范式(1NF&…...
代码随想录day34
1005.K次取反后最大化的数组和 本题主要是想到排序的时候要按绝对值大小排序。 class Solution { static bool cmp(int a,int b){return abs(a)>abs(b); } public:int largestSumAfterKNegations(vector<int>& nums, int k) {sort(nums.begin(),nums.end(),cmp);…...
CSS知识点汇总(八)--Flexbox
1. flexbox(弹性盒布局模型)是什么,适用什么场景? 1. flexbox(弹性盒布局模型)是什么 Flexible Box 简称 flex,意为”弹性布局”,可以简便、完整、响应式地实现各种页面布局。采用…...
ASCII、Unicode、UTF-8、GBK
入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。 目录 一、定义 1、ASCII 2、Unicode 3、UTF-8 4、GB2312 5、GBK 6、\u和\x 二、相互转化 1、str 与 ASCII 2、str与utf-…...
【安全】使用docker安装Nessus
目录 一、准备docker环境服务器(略) 二、安装 2.1 搜索镜像 2.2 拉取镜像 2.3 启动镜像 三、离线更新插件 3.1 获取challenge 3.2 官方注册获取激活码 3.3 使用challenge码和激活码获取插件下载地址 3.4 下载的插件以及许可协议复制到容器内 四…...
【Hadoop综合实践】手机卖场大数据综合项目分析
🚀 本文章实现了基于MapReduce的手机浏览日志分析 🚀 文章简介:主要包含了数据生成部分,数据处理部分,数据存储部分与数据可视化部分 🚀 【本文仅供参考!!非唯一答案】其中需求实现的…...
服务器技术(三)--Nginx
Nginx介绍 Nginx是什么、适用场景 Nginx是一个高性能的HTTP和反向代理服务器,特点是占有内存少,并发能力强,事实上nginx的并发能力确实在同类型的网页服务器中表现较好。 Nginx专为性能优化而开发,性能是其最重要的考量…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释
以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块࿰…...
Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解
文章目录 一、开启慢查询日志,定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...
聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...
Java中HashMap底层原理深度解析:从数据结构到红黑树优化
一、HashMap概述与核心特性 HashMap作为Java集合框架中最常用的数据结构之一,是基于哈希表的Map接口非同步实现。它允许使用null键和null值(但只能有一个null键),并且不保证映射顺序的恒久不变。与Hashtable相比,Hash…...
python读取SQLite表个并生成pdf文件
代码用于创建含50列的SQLite数据库并插入500行随机浮点数据,随后读取数据,通过ReportLab生成横向PDF表格,包含格式化(两位小数)及表头、网格线等美观样式。 # 导入所需库 import sqlite3 # 用于操作…...
