当前位置: 首页 > news >正文

Java中生产者消费者模型

在Java中,生产者消费者模型是一种常见的多线程编程模型,用于解决生产者和消费者之间的数据交互问题。

简介

生产者(Producer)负责生成数据,并将数据放入共享的缓冲区(队列)中。消费者(Consumer)从缓冲区中获取数据并进行处理。生产者和消费者是两个独立的角色,彼此之间通过共享的缓冲区进行通信。

生产者消费者模型的主要差别在于数据交互的方式:

  • 同步方式:在同步方式下,生产者和消费者通过共享的缓冲区进行直接通信。生产者将数据放入缓冲区,消费者从缓冲区中取出数据。典型的同步方式有使用阻塞队列(例如java.util.concurrent.ArrayBlockingQueue)或使用锁和条件变量来实现缓冲区的操作。

  • 异步方式:在异步方式下,生产者和消费者通过消息传递的方式进行通信。生产者将数据发送给消费者,并且不需要等待消费者立即处理。典型的异步方式有使用消息队列(例如java.util.concurrent.LinkedBlockingQueue)或使用事件驱动模型来实现。

生产者消费者模型的优势:

  • 解耦性:生产者和消费者之间通过缓冲区进行解耦,它们可以独立地进行操作和演化,而不会对彼此产生直接的依赖。
  • 并发性:通过使用多个生产者和消费者线程,可以实现并发处理,提高系统的吞吐量和响应性。
  • 缓冲能力:通过使用缓冲区,可以平衡生产者和消费者之间的速度差异,以及处理能力的不匹配。

下面是一个使用阻塞队列实现生产者消费者模型的简单示例:

import java.util.concurrent.ArrayBlockingQueue;public class ProducerConsumerExample {public static void main(String[] args) {ArrayBlockingQueue<Integer> buffer = new ArrayBlockingQueue<>(5); // 缓冲区大小为5Thread producerThread = new Thread(() -> {try {for (int i = 1; i <= 10; i++) {buffer.put(i); // 生产数据放入缓冲区System.out.println("Produced: " + i);Thread.sleep(1000); // 模拟生产耗时}} catch (InterruptedException e) {e.printStackTrace();}});Thread consumerThread = new Thread(() -> {try {for (int i = 1; i <= 10; i++) {int data = buffer.take(); // 从缓冲区消费数据System.out.println("Consumed: " + data);Thread.sleep(2000); // 模拟消费耗时}} catch (InterruptedException e) {e.printStackTrace();}});producerThread.start();consumerThread.start();}
}

在上面的示例中,生产者线程将数据放入阻塞队列(缓冲区),消费者线程从阻塞队列中取出数据进行消费。通过使用阻塞队列,实现了生产者和消费者之间的同步和数据交互。

相关文章:

Java中生产者消费者模型

在Java中&#xff0c;生产者消费者模型是一种常见的多线程编程模型&#xff0c;用于解决生产者和消费者之间的数据交互问题。 简介 生产者&#xff08;Producer&#xff09;负责生成数据&#xff0c;并将数据放入共享的缓冲区&#xff08;队列&#xff09;中。消费者&#xf…...

测试Hyperledger Fabric环境

首先进入fabric-samples目录中的first-networked 子目录 cd fabric-samples/first-network 在first-network目录下有一个自动化脚本byfn.sh,可以使用-help参数查看相应的可 用命令&#xff0c;在命令提示符中输入如下命令&#xff1a; ./byfn.sh --help命令执行成功后&#…...

ClickHouse查询sql长度超超过最大限制

ClickHouse查询sql长度超超过最大限制 Max query size exceeded ClickHouse exception, message: Code: 62. DB::Exception: Syntax error: failed at position 262102 (‘fwm00ud6a3ynu0kaxr.ya0eyemkbzdvrxkhwgchccll’) (line 10406, col 17): fwm00ud6a3ynu0kaxr.ya0eyemk…...

【Axure教程】拖动调整行高列宽的表格

表格是在系统软件中非常常用的工具。表格通常由行和列组成&#xff0c;用于以结构化的方式显示和组织数据。它们在各种场景中都有广泛的应用&#xff0c;包括数据分析、数据录入、报表生成、项目管理和数据可视化等领域。 今天作者就教大家如何在Axure里制作一个能通过鼠标拖动…...

中间件-netty(1)

netty 前言篇 文章目录 一、IO基础篇1.概念1.1 阻塞(Block)和非阻塞(Non-Block)1.2 同步(Synchronization)和异步(Asynchronous)1.3 BIO 与 NIO 对比1.3.1 面向流与面向缓冲1.3.2 阻塞与非阻塞1.3.3 选择器的问世 2.NIO 和 BIO 如何影响应用程序的设计2.1 API调用2.2 数据处理2…...

【方法】想把PDF文档转换成PPT,如何操作?

很多小伙伴在工作中&#xff0c;会使用PDF或者PPT来展示内容。那如果需要把PDF转换成PPT&#xff0c;要如何操作呢&#xff1f; 我们知道&#xff0c;PPT转换成PDF很容易操作&#xff0c;只需通过PPT的【导出】选项&#xff0c;就可以直接转换成PDF&#xff1b;还可以通过“另…...

Linux--设置目录或文件的默认权限:umask权限掩码

目录起始权限是从777&#xff0c;普通文件起始权限从666 为何我们创建一个目录或文件&#xff0c;默认权限是你所看到的样子&#xff1f; 因为凡是在umask中出现的权限&#xff0c;都不应该在最终权限中出现&#xff01; 最终权限起始权限&&#xff08;~umask&#xff09…...

C++实现websocket单server单client全双工通信(基于boost!!!)

自身环境&#xff1a;ubuntu18.04gcc7.5.0boost1.7,3 环境配置 gcc或者g一般都有&#xff0c;这里主要介绍一下boost的配置方法   执行如下代码&#xff1a; wget https://boostorg.jfrog.io/artifactory/main/release/1.73.0/source/boost_1_73_0.tar.bz2 --no-check-cert…...

好用的网址5

搜番神器&#xff1a;https://trace.moe/ Online converter&#xff1a;Online converter - convert video, images, audio and documents for free 格式转换 GIF Explode&#xff1a;https://gif-explode.com/ SongDonkey&#xff1a;SongDonkey - AI Online Audio Split…...

做项目去实习到底做的什么?

300万字&#xff01;全网最全大数据学习面试社区等你来&#xff01; 今天是手机编辑的文章&#xff0c;说说做项目/实习这回事。 我之前发过一些视频&#xff0c;讲校招四要素的&#xff0c;其中一个很重要的部分就是实习。 对社招同学来说&#xff0c;就简单了&#xff0c;面试…...

VSC++: 验证身份证

缘由https://ask.csdn.net/questions/1082358 void 验证身份证() {//缘由https://ask.csdn.net/questions/1082358int 权重[] { 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2 }, 个 0, j 0, a 0, he 0;char M[] "10X98765432", 身份号[100][20]{};//…...

机器学习-方差和偏差理论

机器学习-方差和偏差理论 关于机器学习方差和偏差的内容其实很重要&#xff0c;这个方差和偏差可以帮助我们去分析&#xff0c;模型的泛化能力和过拟合的程度。 下面我们先给存储方差和偏差的公式&#xff1a; 注意&#xff0c;下式当中&#xff0c; f ( x ; D ) 表示在数据集…...

力扣 669. 修剪二叉搜索树

题目来源&#xff1a;https://leetcode.cn/problems/trim-a-binary-search-tree/description/ C题解1&#xff1a;递归法。当前节点为空时返回空&#xff0c;不为空时对其值进行分类讨论。以low为例&#xff0c;当前节点值等于low时&#xff0c;意味着其左子树都要丢弃&#xf…...

ChatGPT在多轮对话中的表现如何?

ChatGPT是一个非常强大的自然语言处理模型&#xff0c;它可以生成高质量的自然语言文本&#xff0c;并且在多轮对话中也有很好的表现。以下是关于ChatGPT在多轮对话中表现的详细介绍&#xff1a; 上下文感知 ChatGPT可以通过上下文感知来理解当前对话的语境和主题。在多轮对话…...

C++ 虚函数 (virtual function) 介绍

文章目录 1. 什么是虚函数2. 虚函数与非虚函数的区别3. 派生类中的虚函数4. 构造/析构函数可以是虚函数吗&#xff1f;5. 纯虚函数5.1 纯虚函数的定义5.1 纯虚函数的特定 1. 什么是虚函数 C 对象有三大特性&#xff1a;继承、封装、多态&#xff1b;虚函数就是实现多态的一种方…...

写给小白的ChatGPT和AI原理

前言 随着ChatGPT等生成式AI的大火&#xff0c;很多开发者都对AI感兴趣。笔者是一名应用层的开发工程师&#xff0c;想必很多类似的开发者都对AI这块不太了解&#xff0c;故而从自己的理解&#xff0c;写一篇給小白的AI入门文章&#xff0c;希望可以帮助到大家。 这是GPT对本…...

多元回归预测 | Matlab基于麻雀算法(SSA)优化混合核极限学习机HKELM回归预测, SSA-HKELM数据回归预测,多变量输入模型

文章目录 效果一览文章概述部分源码参考资料效果一览 文章概述 多元回归预测 | Matlab基于麻雀算法(SSA)优化混合核极限学习机HKELM回归预测, SSA-HKELM数据回归预测,多变量输入模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。 …...

High Performance Visual Tracking with Siamese Region Proposal Network(SiamRPN)

High Performance Visual Tracking with Siamese Region Proposal Network&#xff08;SiamRPN&#xff0c;CVPR2018&#xff09; 主要贡献&#xff1a; 提出了SiamRPN跟踪器&#xff0c;首次将端到端的离线训练方式&#xff0c;应用到了大尺度的图像跟踪任务上在在线跟踪过程…...

【Vue3 生态】VueRouter 路由核心知识点

1. 动态路由 1.1 动态路由匹配 路由分为静态路由和动态路由。上面讲过的类似 ‘/login’ 这样写死的就是静态路由。 动态路由通过在路径中使用一个动态字段&#xff08;简称&#xff1a;路径参数&#xff09;&#xff0c;来将不同的信息映射到同一个组件中。 如&#xff1a…...

SpringCloud-Nacos配置管理

文章目录 Nacos配置管理统一配置管理在nacos中添加配置文件从微服务拉取配置 配置热更新方式一方式二 配置共享1&#xff09;添加一个环境共享配置2&#xff09;在user-service中读取共享配置3&#xff09;运行两个UserApplication&#xff0c;使用不同的profile3&#xff09;运…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...

Linux-进程间的通信

1、IPC&#xff1a; Inter Process Communication&#xff08;进程间通信&#xff09;&#xff1a; 由于每个进程在操作系统中有独立的地址空间&#xff0c;它们不能像线程那样直接访问彼此的内存&#xff0c;所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...

Axure零基础跟我学:展开与收回

亲爱的小伙伴,如有帮助请订阅专栏!跟着老师每课一练,系统学习Axure交互设计课程! Axure产品经理精品视频课https://edu.csdn.net/course/detail/40420 课程主题:Axure菜单展开与收回 课程视频:...

Element-Plus:popconfirm与tooltip一起使用不生效?

你们好&#xff0c;我是金金金。 场景 我正在使用Element-plus组件库当中的el-popconfirm和el-tooltip&#xff0c;产品要求是两个需要结合一起使用&#xff0c;也就是鼠标悬浮上去有提示文字&#xff0c;并且点击之后需要出现气泡确认框 代码 <el-popconfirm title"是…...