Java中生产者消费者模型
在Java中,生产者消费者模型是一种常见的多线程编程模型,用于解决生产者和消费者之间的数据交互问题。
简介
生产者(Producer)负责生成数据,并将数据放入共享的缓冲区(队列)中。消费者(Consumer)从缓冲区中获取数据并进行处理。生产者和消费者是两个独立的角色,彼此之间通过共享的缓冲区进行通信。
生产者消费者模型的主要差别在于数据交互的方式:
-
同步方式:在同步方式下,生产者和消费者通过共享的缓冲区进行直接通信。生产者将数据放入缓冲区,消费者从缓冲区中取出数据。典型的同步方式有使用阻塞队列(例如java.util.concurrent.ArrayBlockingQueue)或使用锁和条件变量来实现缓冲区的操作。
-
异步方式:在异步方式下,生产者和消费者通过消息传递的方式进行通信。生产者将数据发送给消费者,并且不需要等待消费者立即处理。典型的异步方式有使用消息队列(例如java.util.concurrent.LinkedBlockingQueue)或使用事件驱动模型来实现。
生产者消费者模型的优势:
- 解耦性:生产者和消费者之间通过缓冲区进行解耦,它们可以独立地进行操作和演化,而不会对彼此产生直接的依赖。
- 并发性:通过使用多个生产者和消费者线程,可以实现并发处理,提高系统的吞吐量和响应性。
- 缓冲能力:通过使用缓冲区,可以平衡生产者和消费者之间的速度差异,以及处理能力的不匹配。
下面是一个使用阻塞队列实现生产者消费者模型的简单示例:
import java.util.concurrent.ArrayBlockingQueue;public class ProducerConsumerExample {public static void main(String[] args) {ArrayBlockingQueue<Integer> buffer = new ArrayBlockingQueue<>(5); // 缓冲区大小为5Thread producerThread = new Thread(() -> {try {for (int i = 1; i <= 10; i++) {buffer.put(i); // 生产数据放入缓冲区System.out.println("Produced: " + i);Thread.sleep(1000); // 模拟生产耗时}} catch (InterruptedException e) {e.printStackTrace();}});Thread consumerThread = new Thread(() -> {try {for (int i = 1; i <= 10; i++) {int data = buffer.take(); // 从缓冲区消费数据System.out.println("Consumed: " + data);Thread.sleep(2000); // 模拟消费耗时}} catch (InterruptedException e) {e.printStackTrace();}});producerThread.start();consumerThread.start();}
}
在上面的示例中,生产者线程将数据放入阻塞队列(缓冲区),消费者线程从阻塞队列中取出数据进行消费。通过使用阻塞队列,实现了生产者和消费者之间的同步和数据交互。
相关文章:
Java中生产者消费者模型
在Java中,生产者消费者模型是一种常见的多线程编程模型,用于解决生产者和消费者之间的数据交互问题。 简介 生产者(Producer)负责生成数据,并将数据放入共享的缓冲区(队列)中。消费者…...
测试Hyperledger Fabric环境
首先进入fabric-samples目录中的first-networked 子目录 cd fabric-samples/first-network 在first-network目录下有一个自动化脚本byfn.sh,可以使用-help参数查看相应的可 用命令,在命令提示符中输入如下命令: ./byfn.sh --help命令执行成功后&#…...
ClickHouse查询sql长度超超过最大限制
ClickHouse查询sql长度超超过最大限制 Max query size exceeded ClickHouse exception, message: Code: 62. DB::Exception: Syntax error: failed at position 262102 (‘fwm00ud6a3ynu0kaxr.ya0eyemkbzdvrxkhwgchccll’) (line 10406, col 17): fwm00ud6a3ynu0kaxr.ya0eyemk…...
【Axure教程】拖动调整行高列宽的表格
表格是在系统软件中非常常用的工具。表格通常由行和列组成,用于以结构化的方式显示和组织数据。它们在各种场景中都有广泛的应用,包括数据分析、数据录入、报表生成、项目管理和数据可视化等领域。 今天作者就教大家如何在Axure里制作一个能通过鼠标拖动…...
中间件-netty(1)
netty 前言篇 文章目录 一、IO基础篇1.概念1.1 阻塞(Block)和非阻塞(Non-Block)1.2 同步(Synchronization)和异步(Asynchronous)1.3 BIO 与 NIO 对比1.3.1 面向流与面向缓冲1.3.2 阻塞与非阻塞1.3.3 选择器的问世 2.NIO 和 BIO 如何影响应用程序的设计2.1 API调用2.2 数据处理2…...
【方法】想把PDF文档转换成PPT,如何操作?
很多小伙伴在工作中,会使用PDF或者PPT来展示内容。那如果需要把PDF转换成PPT,要如何操作呢? 我们知道,PPT转换成PDF很容易操作,只需通过PPT的【导出】选项,就可以直接转换成PDF;还可以通过“另…...
Linux--设置目录或文件的默认权限:umask权限掩码
目录起始权限是从777,普通文件起始权限从666 为何我们创建一个目录或文件,默认权限是你所看到的样子? 因为凡是在umask中出现的权限,都不应该在最终权限中出现! 最终权限起始权限&(~umask)…...
C++实现websocket单server单client全双工通信(基于boost!!!)
自身环境:ubuntu18.04gcc7.5.0boost1.7,3 环境配置 gcc或者g一般都有,这里主要介绍一下boost的配置方法 执行如下代码: wget https://boostorg.jfrog.io/artifactory/main/release/1.73.0/source/boost_1_73_0.tar.bz2 --no-check-cert…...
好用的网址5
搜番神器:https://trace.moe/ Online converter:Online converter - convert video, images, audio and documents for free 格式转换 GIF Explode:https://gif-explode.com/ SongDonkey:SongDonkey - AI Online Audio Split…...
做项目去实习到底做的什么?
300万字!全网最全大数据学习面试社区等你来! 今天是手机编辑的文章,说说做项目/实习这回事。 我之前发过一些视频,讲校招四要素的,其中一个很重要的部分就是实习。 对社招同学来说,就简单了,面试…...
VSC++: 验证身份证
缘由https://ask.csdn.net/questions/1082358 void 验证身份证() {//缘由https://ask.csdn.net/questions/1082358int 权重[] { 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2 }, 个 0, j 0, a 0, he 0;char M[] "10X98765432", 身份号[100][20]{};//…...
机器学习-方差和偏差理论
机器学习-方差和偏差理论 关于机器学习方差和偏差的内容其实很重要,这个方差和偏差可以帮助我们去分析,模型的泛化能力和过拟合的程度。 下面我们先给存储方差和偏差的公式: 注意,下式当中, f ( x ; D ) 表示在数据集…...
力扣 669. 修剪二叉搜索树
题目来源:https://leetcode.cn/problems/trim-a-binary-search-tree/description/ C题解1:递归法。当前节点为空时返回空,不为空时对其值进行分类讨论。以low为例,当前节点值等于low时,意味着其左子树都要丢弃…...
ChatGPT在多轮对话中的表现如何?
ChatGPT是一个非常强大的自然语言处理模型,它可以生成高质量的自然语言文本,并且在多轮对话中也有很好的表现。以下是关于ChatGPT在多轮对话中表现的详细介绍: 上下文感知 ChatGPT可以通过上下文感知来理解当前对话的语境和主题。在多轮对话…...
C++ 虚函数 (virtual function) 介绍
文章目录 1. 什么是虚函数2. 虚函数与非虚函数的区别3. 派生类中的虚函数4. 构造/析构函数可以是虚函数吗?5. 纯虚函数5.1 纯虚函数的定义5.1 纯虚函数的特定 1. 什么是虚函数 C 对象有三大特性:继承、封装、多态;虚函数就是实现多态的一种方…...
写给小白的ChatGPT和AI原理
前言 随着ChatGPT等生成式AI的大火,很多开发者都对AI感兴趣。笔者是一名应用层的开发工程师,想必很多类似的开发者都对AI这块不太了解,故而从自己的理解,写一篇給小白的AI入门文章,希望可以帮助到大家。 这是GPT对本…...
多元回归预测 | Matlab基于麻雀算法(SSA)优化混合核极限学习机HKELM回归预测, SSA-HKELM数据回归预测,多变量输入模型
文章目录 效果一览文章概述部分源码参考资料效果一览 文章概述 多元回归预测 | Matlab基于麻雀算法(SSA)优化混合核极限学习机HKELM回归预测, SSA-HKELM数据回归预测,多变量输入模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。 …...
High Performance Visual Tracking with Siamese Region Proposal Network(SiamRPN)
High Performance Visual Tracking with Siamese Region Proposal Network(SiamRPN,CVPR2018) 主要贡献: 提出了SiamRPN跟踪器,首次将端到端的离线训练方式,应用到了大尺度的图像跟踪任务上在在线跟踪过程…...
【Vue3 生态】VueRouter 路由核心知识点
1. 动态路由 1.1 动态路由匹配 路由分为静态路由和动态路由。上面讲过的类似 ‘/login’ 这样写死的就是静态路由。 动态路由通过在路径中使用一个动态字段(简称:路径参数),来将不同的信息映射到同一个组件中。 如:…...
SpringCloud-Nacos配置管理
文章目录 Nacos配置管理统一配置管理在nacos中添加配置文件从微服务拉取配置 配置热更新方式一方式二 配置共享1)添加一个环境共享配置2)在user-service中读取共享配置3)运行两个UserApplication,使用不同的profile3)运…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...
k8s从入门到放弃之HPA控制器
k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...
