机器学习-方差和偏差理论
机器学习-方差和偏差理论
关于机器学习方差和偏差的内容其实很重要,这个方差和偏差可以帮助我们去分析,模型的泛化能力和过拟合的程度。
下面我们先给存储方差和偏差的公式:
注意,下式当中, f ( x ; D ) 表示在数据集 D 上训练出的模型, f − ( x ) 表示无穷多个不同数据集训练出的加权平均模型, y 表示假设中的最优模型。 f(x;D)表示在数据集D上训练出的模型,f^{-}(x)表示无穷多个不同数据集训练出的加权平均模型,y表示假设中的最优模型。 f(x;D)表示在数据集D上训练出的模型,f−(x)表示无穷多个不同数据集训练出的加权平均模型,y表示假设中的最优模型。
注:下面说的不同数据集,实质上是同源的,也就是本质上来源于一个性质的数据源。
其实我们从上式可以看出,方差就是不同数据集训练出的模型内方差。
偏差就是不同数据集训练出的模型,在对其计算平均模型,平均模型与最优模型的平方差就是偏差。
如果你有着很多的机器学习实战,或许,你可以推导出,泛化能力、过拟合程度和方差与偏差的联系。
下面博主就总结一下,泛化能力、过拟合程度和方差与偏差的联系:
(1)很显然,方差越大,说明在不同数据集上的参数差异大,即模型差异大,也就是模型对于数据集过于敏感,也就是过拟合的可能性越大,所以,方差越大模型越可能过拟合。
(2)那么偏差呢?偏差越大说明模型和最优模型的结果差异越大,也就是模型效果不好,即泛化能力越差。
所以理想状态下,我们希望,方差和偏差都比较小,这是最好的。
对于方差和偏差的实验应该也是挺有趣的,但是时间有限,博主就不做了,不过我知道怎么做这个实验,感兴趣的同学可以咨询我啊。
相关文章:

机器学习-方差和偏差理论
机器学习-方差和偏差理论 关于机器学习方差和偏差的内容其实很重要,这个方差和偏差可以帮助我们去分析,模型的泛化能力和过拟合的程度。 下面我们先给存储方差和偏差的公式: 注意,下式当中, f ( x ; D ) 表示在数据集…...

力扣 669. 修剪二叉搜索树
题目来源:https://leetcode.cn/problems/trim-a-binary-search-tree/description/ C题解1:递归法。当前节点为空时返回空,不为空时对其值进行分类讨论。以low为例,当前节点值等于low时,意味着其左子树都要丢弃…...
ChatGPT在多轮对话中的表现如何?
ChatGPT是一个非常强大的自然语言处理模型,它可以生成高质量的自然语言文本,并且在多轮对话中也有很好的表现。以下是关于ChatGPT在多轮对话中表现的详细介绍: 上下文感知 ChatGPT可以通过上下文感知来理解当前对话的语境和主题。在多轮对话…...
C++ 虚函数 (virtual function) 介绍
文章目录 1. 什么是虚函数2. 虚函数与非虚函数的区别3. 派生类中的虚函数4. 构造/析构函数可以是虚函数吗?5. 纯虚函数5.1 纯虚函数的定义5.1 纯虚函数的特定 1. 什么是虚函数 C 对象有三大特性:继承、封装、多态;虚函数就是实现多态的一种方…...
写给小白的ChatGPT和AI原理
前言 随着ChatGPT等生成式AI的大火,很多开发者都对AI感兴趣。笔者是一名应用层的开发工程师,想必很多类似的开发者都对AI这块不太了解,故而从自己的理解,写一篇給小白的AI入门文章,希望可以帮助到大家。 这是GPT对本…...

多元回归预测 | Matlab基于麻雀算法(SSA)优化混合核极限学习机HKELM回归预测, SSA-HKELM数据回归预测,多变量输入模型
文章目录 效果一览文章概述部分源码参考资料效果一览 文章概述 多元回归预测 | Matlab基于麻雀算法(SSA)优化混合核极限学习机HKELM回归预测, SSA-HKELM数据回归预测,多变量输入模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。 …...

High Performance Visual Tracking with Siamese Region Proposal Network(SiamRPN)
High Performance Visual Tracking with Siamese Region Proposal Network(SiamRPN,CVPR2018) 主要贡献: 提出了SiamRPN跟踪器,首次将端到端的离线训练方式,应用到了大尺度的图像跟踪任务上在在线跟踪过程…...
【Vue3 生态】VueRouter 路由核心知识点
1. 动态路由 1.1 动态路由匹配 路由分为静态路由和动态路由。上面讲过的类似 ‘/login’ 这样写死的就是静态路由。 动态路由通过在路径中使用一个动态字段(简称:路径参数),来将不同的信息映射到同一个组件中。 如:…...

SpringCloud-Nacos配置管理
文章目录 Nacos配置管理统一配置管理在nacos中添加配置文件从微服务拉取配置 配置热更新方式一方式二 配置共享1)添加一个环境共享配置2)在user-service中读取共享配置3)运行两个UserApplication,使用不同的profile3)运…...
物流智能分拣管理
电子商务的兴起,实体消费和虚拟消费结合的方式加快商品流通速度。计算机硬件和软件结合,改变了现代社会的工作和生活。线上和线下的消费方式这种消费观念新颖,受到很多年轻消费者的青睐。不同的时期有不同的经济运行机制,电子是一…...

Qt编写视频监控系统79-四种界面导航栏的设计
一、前言 最初视频监控系统按照二级菜单的设计思路,顶部标题栏一级菜单,左侧对应二级菜单,最初采用图片在上面,文字在下面的按钮方式展示,随着功能的增加,二级菜单越来越多,如果都是这个图文上…...

界面开发框架Qt新手入门教程:如何使用Calendar组件创建日历(二)
Qt 是目前最先进、最完整的跨平台C开发工具。它不仅完全实现了一次编写,所有平台无差别运行,更提供了几乎所有开发过程中需要用到的工具。如今,Qt已被运用于超过70个行业、数千家企业,支持数百万设备及应用。 本文中的CalendarWi…...

charles unknown 问题和手机代理设置(iOS手机)
一、Charles下载 下载地址:https://www.charlesproxy.com/download/ 二、Charles配置代理 1.查看本机IP:help-->Local IP Address 2.查看或者设置访问端口:Proxy->Proxy Settings 3.设置不代理计算机的请求(推荐࿰…...
【备战秋招】每日一题:2023.03.26-阿里OD机试(第三题)-数组之和最小值
为了更好的阅读体检,可以查看我的算法学习网站 在线评测链接:P1119 题目内容 塔子哥是一个热爱数学的年轻数学家,他对数字和因子分解有着深入的研究。 有一天,他在一次偶然的探索中发现了一款神奇的游戏,名为“除数游戏”。 在…...
网站的SEO优化:提升搜索引擎可见性的关键步骤
93. 网站的SEO优化:提升搜索引擎可见性的关键步骤 SEO(Search Engine Optimization)是指通过优化网站的内容、结构、链接和其他因素,以提高网站在搜索引擎结果页面(SERP)中的排名和可见性的过程。 优化网…...

Spring Boot 中的服务注册是什么,原理,如何使用
Spring Boot 中的服务注册是什么,原理,如何使用 Spring Boot 是一个非常流行的 Java 后端框架,它提供了许多便捷的功能和工具,使得开发者可以更加高效地开发微服务应用。其中,服务注册是 Spring Boot 微服务架构中非常…...
spring.factories文件在Spring工程中的说明
说明 spring.factories 是 Spring Boot 框架中一个特殊的配置文件,它用于定义自动配置的实现类以及要注册的其他组件信息。该文件通常位于 META-INF/spring.factories 目录下,Spring Boot 在启动时会自动加载它并读取其中的配置信息。 spring.factorie…...

常见的自动化测试架构有哪些?
目录 前言 常见的自动化架构包括如下。 1.数据驱动测试 2.模块驱动测试 3.关键字驱动测试 优点: 缺点: 总结: 前言 一个自动化测试架构就是一个集成体系,其中定义了一个特殊软件产品的自动化测试规则。这一体系中包含测试…...

Revit中用自适应创建简单的瓦片族和切换构件的材质?
一、Revit中使用自适应创建瓦片族 在我们的日常生活中,屋顶的瓦片是我们经常都能够见到的,瓦片能够挡风遮雨也能够使建筑物带来古香古色的气息,那我们今天来学习如何使用自适应创建简单的瓦片族。 1.首先:我们打开自适应公制常规模…...

Spring Boot实战:拦截器和监听器的应用指南
当使用Spring Boot时,我们可以通过拦截器(Interceptor)和监听器(Listener)来实现对请求和响应的处理。拦截器和监听器提供了一种可插拔的机制,用于在请求处理过程中进行自定义操作,例如记录日志…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...