当前位置: 首页 > news >正文

什么是GPT?

文章目录

  • 1、什么是GPT?
  • 2、gpt版本时间线
  • 3、我们能用GPT做什么?
  • 4、如何快速体验GPT?
  • 5、作为一名开发者,如何在代码中使用GPT?
  • 6、如何在现有项目中使用和部署GPT?
  • 7、GPT的优缺点?
  • 8、对于人工智能的看法
  • 9、最后

1、什么是GPT?

GPT是Generative Pre-training Transformer的缩写,翻译成中文是生成型预训练转换器。它最初是由OpenAI团队在2018年开发的一种人工智能语言模型。GPT的主要功能是生成自然语言的文本,这也是它被称为“生成型”的原因。它的工作机制是以一种序列化的方式处理信息,可理解为一种理解语言的模式,对输入的一段文字或者语句进行分析,然后预测接下来应该生成什么内容,进而能够撰写段落或完整的文章。

GPT采用的是深度学习模型,基于Transformer网络架构,这是一种特殊的人工神经网络,通过自注意力机制,在处理长序列文本的能力上具有显著优势。GPT本身就是一种预训练模型,开发者可以基于GPT模型进行微调(fine-tuning),应用于各种不同的任务,比如问答、摘要生成、翻译等。

2、gpt版本时间线

在GPT的发展过程中,目前划时代的有三个版本:GPT-1、GPT-2 和 GPT-3。每一个版本都代表了人工智能和自然语言处理领域的重大突破。下面,我们将详细介绍每个版本的发展历程和特点。

  • GPT-1:

GPT-1是OpenAI团队在2018年发布的第一个版本。它引入了transformer结构,并采用预训练后fine-tuning的方式进行训练,它的模型规模相对较小,有1.17亿(117M)的模型参数。尽管GPT-1只能处理较短的文本,比如几段文字或一篇短文,但已经能够象人类一样产生看似有意义的语句,甚至能对一些问题进行简单的回答。GPT-1启发了大家对于语言模型的新理解,引发了在自然语言处理任务上,预训练模型的热潮。

  • GPT-2:

在2019年,OpenAI发布了GPT-2。它的模型参数已经增加到了15亿(1.5B),整体来说,GPT-2的能力比GPT-1强大得多。它可以生成更长的文本内容,文本质量也大大提高,有的甚至能让人误以为是人类写的。不仅如此,你甚至可以和GPT-2进行类似聊天的交流,它能理解你的问题,并给出看似合理的答案。

真正让人惊讶的是,GPT-2在一些特定任务上,如阅读理解、翻译,甚至能超越当时的最先进方法。然而,由于GPT-2强大的生成能力,同时也让人担心它可能被用来生成假新闻或者网络钓鱼邮件,因此OpenAI在一开始并未公开所有版本的模型,这让人对AI的伦理问题有了新的认识。

  • GPT-3:

至2020年,OpenAI发布了GPT-3。这次他们把模型参数增加到了惊人的1750亿(175B)。GPT-3有了前所未有的强大能力,可以生成非常高质量和连贯性强的长文本。比如,它能根据一段代码的描述,生成对应的Python代码;可以写出极具说服力的商业报告,等等。

GPT-3在许多任务中仅仅通过单步的前向传播就能表现得很好,而不用像之前的版本那样需要fine-tuning。也就是说,GPT-3在新任务上的适用性更强。而OpenAI以API的形式对外提供GPT-3的服务,使得许多开发者能方便地利用GPT-3,开发各种各样的应用。

总结来说,GPT从1到3的发展,不仅仅是模型参数的增大,更是我们对自然语言理解,对人工智能应用的理解的深入。每一个版本,都反映了人工智能技术的进步,也反映了社会对人工智能的期待和恐惧。未来,我们期待看到更多突破,不仅在技术上,也在人工智能的应用和伦理问题的讨论上。

3、我们能用GPT做什么?

GPT具有很多实用的应用场景,其中离我们最近的就是文章生成。比如,你可以向GPT模型输入一个概念、一个问题或者一个标题,它就可以生成一篇完整的文章。除此之外,GPT还可以完成聊天机器人、自动邮件回复、新闻撰写、代码编写等很多任务,并且由于其方向迁移(transfer learning)的特性,这种模型在训练过程中会学习大量通用知识,可以被多次使用,加强其他任务的性能。

另一大应用领域是问答系统。你可以输入一个问题,它能够给你生成一个答案,甚至能够进行对话。这不仅可以用在一些常见问题的自动应答,更可以用于教育培训、线上咨询等领域。

总结起来,GPT模型既可以用在文本关联生成的应用,也可以用在自然语言理解的任务,它能大大提高我们处理语言的效率和质量。

4、如何快速体验GPT?

对于没有编程基础的用户来说,想要体验GPT最快的方式就是使用一些开放的在线工具。比如,OpenAI官方就推出了一款名为"GPT-3 playground"的在线平台,用户可以在这个平台上直接输入自己的问题或者任务,系统就会自动调用GPT模型来生成结果。

而对于有编程基础的用户来说,可以通过Python等编程语言,直接调用像Hugging Face这样的开源工具包,它们提供了非常方便的模块,使得你可以在自己的代码中使用GPT模型。

不论哪种方式,都可以让你体验到GPT模型的强大之处,当然,理解并掌握GPT模型需要一定的学习和实践过程。

5、作为一名开发者,如何在代码中使用GPT?

如果你是一个开发者并且你对GPT感兴趣,实际上非常容易在代码中使用。具体操作流程通常分为以下几步:

第一,安装相关的工具包。如果是Python,通常我们会选择安装 PyTorch 和 Hugging Face 的 transformers 工具包。

第二,下载和加载预训练模型。你可以直接在Hugging Face的模型库中找到你需要的GPT模型,然后顺着代码指引下载并加载。

第三,使用模型进行预测。这里的预测包括两种情况,一种是需要先对模型进行微调后再进行预测,一种是直接使用预训练模型预测。

第四,评估和优化。在实际使用中,需要根据任务的实际需求和模型的实际表现,进行必要的调整和优化。

这仅仅是个简单的流程,为了更好地使用GPT模型,可能需要一定的相关知识,包括深度学习、自然语言处理等领域的知识。

6、如何在现有项目中使用和部署GPT?

在现有的项目中使用,首先需要明确你希望GPT模型帮助你完成什么任务,比如文章生成、问答系统、对话机器人等,然后你可以根据相应的任务进行微调。将预训练的GPT模型当作初始化参数,结合你的任务数据进行训练,以此得到适用于特定任务的模型。

其次,模型训练完之后,就可以将其整合到项目中去。根据项目的需要,你可能需要写一些额外的代码来调用模型、获取模型的输出结果、处理模型的输出结果等。这时候要注意代码的质量,尽可能确保模型的稳定性和适用性。

最后,在实际部署中,需要考虑模型的性能和资源占用。GPT模型自身比较大,可能需要很多计算资源,这就需要在具体部署的时候,
选择合适的硬件设备和软件框架,来确保模型的运行效率和稳定性。

7、GPT的优缺点?

GPT模型既具有显著的优点,也存在一些限制。它最大的优点是强大的生成能力和迁移学习能力,模型预训练过程会“学习”大量的自然语言知识,这使得它在各种自然语言处理任务中表现都相当出色。

但一方面,GPT模型参数众多,需要大量的训练数据、计算资源和时间。另一方面,GPT模型生成的文本并不能保证其真实性,有可能产生虚假或误导性的信息;另外,模型对于输入的理解仅限于模式匹配,缺少真实的理解和推理能力。

总的来说,GPT模型是一种非常强大的自然语言处理工具,但在实际使用中,还需要结合任务的具体需求,做出适当的调整。

8、对于人工智能的看法

作为一名科技博主,我认为人工智能是改变未来的核心力量。它能大幅提高生产效率,改变传统行业,甚至开辟出全新的行业领域。可以说,无论是在医疗、教育,还是在娱乐、电商等领域,人工智能都有他们的身影。

GPT和其他人工智能模型,帮助我们处理大量已超出人类处理能力的数据,而这些数据正是我们认识世界,提升工作生活质量的关键。同时,我也看到了人工智能带来的问题,比如对隐私的侵犯、用工替代、人性化的决策等。因此,如何在利用的同时,控制风险,避免滥用,将是接下来人工智能发展的重要议题。

9、最后

有了上述对GPT的介绍,我想你对人工智能的理解可能会更深一些。但是,我也知道,人工智能这个世界是如此的广阔和多彩,可能我的介绍中仍有许多你不理解的地方,也可能你心中已经有了许多问题。然而,这就是学习和探索的乐趣所在,我们可以共同在这个世界中寻找答案。请在下方留言,告诉我你对于GPT或者人工智能有哪些问题或想法,我会尽可能为你解答,让我们一起探索这个奇妙的人工智能世界。

相关文章:

什么是GPT?

文章目录 1、什么是GPT?2、gpt版本时间线3、我们能用GPT做什么?4、如何快速体验GPT?5、作为一名开发者,如何在代码中使用GPT?6、如何在现有项目中使用和部署GPT?7、GPT的优缺点?8、对于人工智能…...

如何通过浏览器配置哪些网页不走代理服务器,Lantern开启后部分网页打不开了

浏览器点设置 > 搜索“代理” > “打开计算机的代理设置” > 编辑“使用代理服务器” 搜索“代理” > “打开计算机的代理设置” > 编辑“使用代理服务器”,将不用代理的url链接域名写进来,点击保存。然后刷新打不开的网页,…...

Redis常见面试题

什么是Redis持久化?Redis有哪几种持久化方式?优缺点是什么 把redis内存中的数据持久化到磁盘的过程就是redis持久化。RDB:快照存储,每隔一段时间对redis内存中的数据进程快照存储。优点:恢复数据快 缺点:数据完整性差 AOF:日志追加 把每个写…...

应用零信任原则:案例研究和现场经验教训

随着云架构、软件即服务和分布式劳动力日益成为当今现代组织的主导现实,零信任安全模型已成为首选安全范例。 因此,描述零信任安全原则以及构成零信任架构 (ZTA) 的组件的出版物和资源数量几乎令人瘫痪。该行业缺乏的是一个多样化的示例库,可…...

RabbitMQ系列(14)--Topics交换机的简介与实现

1、Topics交换机的介绍 Topics交换机能让消息只发送往绑定了指定routingkey的队列中去,不同于Direct交换机的是,Topics能把一个消息往多个不同的队列发送;Topics交换机的routingkey不能随意写,必须是一个单词列表,并以…...

解决PyInstaller打包selenium脚本时弹出driver终端窗口

解决PyInstaller打包selenium脚本时弹出driver终端窗口 找到service.py C:\Users\XXX\AppData\Roaming\Python\Python39\site-packages\selenium\webdriver\common\service.py添加creationflags 在第77行添加: creationflags134217728使用PyInstaller打包 pyinstaller -F -w -…...

基于卷积神经网络VGG的猫狗识别

!有需要本项目的实验源码的可以私信博主! 摘要:随着大数据时代的到来,深度学习、数据挖掘、图像处理等已经成为了一个热门研究方向。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远…...

mysql查询语句练习总结(涵盖所有sql语法)

最近在学习SQL嘛,所以各个地方找题目来练手,毕竟现在能离得开数据库么? Student(S#,Sname,Sage,Ssex) 学生表 Course(C#,Cname,T#) 课程表 SC(S#,C#,score) 成绩表 Teacher(T#,Tname) 教师表 问题: 1、查询“001”课程比“002”课程成绩高的所有学生的学号&#x…...

TypeScript 中 any、unknown、never 和 void 有什么区别?

一 unknown: 未知类型 unknown: 未知类型是typescript 3.0 中引入的新类型。 1.1 所有类型的字面量都可以分配给unknown类型 unknown未知类型,代表变量类型未知,也就是可能为任意类型,所以, 所有类型的字面量都可以分配给unkno…...

算法Day60 | 84.柱状图中最大的矩形,刷题总结

Day60 84.柱状图中最大的矩形刷题总结 84.柱状图中最大的矩形 题目链接:84.柱状图中最大的矩形 遍历每个元素,找到左右元素小于当前元素的,以左右元素间的区间(左开右开区间)所围成的面积中的最大值。 数组尾部加一个…...

python实现pdf转换为word文档,尽量保持格式不变

from pdf2docx import Converterdef convert_pdf_to_word(pdf_path, docx_path, font_path):# 创建 pdf2docx.Converter 对象,用于进行 PDF 到 Word 文档的转换操作。cv Converter(pdf_path)# 设置系统默认字体文件的路径cv.font_path font_path# docx_path 转换…...

TCP / IP 网际层的 4 个重要协议

TCP / IP 网际层的 4 个重要协议 TCP/IP(Transmission Control Protocol/Internet Protocol)是一组用于互联网通信的协议。其中,网际层(Internet Layer)是TCP/IP协议栈中的一个关键层,主要负责网络间的数据…...

MySQL阶段DAY20(附笔记)

【注意】:工厂模式学习知识结构如下: (一)、单例模式 1.Single类: 使用懒汉式:对象的延迟加载,安全的,高效的应用 双重判断提升效率和安全性 package singleton;/** 单例设计模式之…...

考场作弊行为自动抓拍告警算法 yolov7

考场作弊行为自动抓拍告警系统通过yolov7python网络模型算法,考场作弊行为自动抓拍告警算法实时监测考场内所有考生的行为,对考生的行为进行自动抓拍,并分析判断是否存在作弊行为。YOLOv7 的发展方向与当前主流的实时目标检测器不同&#xff…...

在Linux中安装RabbitMQ

RabbitMQ下载网址 Socat下载网址 erlang下载网址 RabbitMQ安装包依赖于Erlang语言包的支持,所以需要先安装Erlang语言包,再安装RabbitMQ安装包 通过Xftp软件将这三个压缩包上传到linux中的opt目录下 ,双击即可 在安装之前先查询…...

electron 单个实例控制以及日志输出

electron 单个实例控制 在使用electron打包的应用程序的时候,点击应用图标会打开多个实例,要想控制单个实例,需要通过 app.requestSingleInstanceLock() 判断当前程序的实例是否为当前取得锁, 或者说, 当前实例是否为…...

基于matlab使用AprilTag标记进行相机校准(附源码)

一、前言 AprilTags被广泛用作物体检测、定位应用的视觉标记,并作为相机校准的目标。AprilTags类似于QR码,但旨在编码更少的数据,因此可以更快地解码,这对于实时机器人应用程序非常有用。使用 AprilTags 作为校准模式的优点包括更…...

计算机网络————运输层

文章目录 概述UDPTCP首部格式 连接管理连接建立连接释放 概述 从IP层看,通信双方是两个主机。 但真正进行通信的实体是在主机中的进程,是这个主机中的一个进程和另一个主机中的一个进程在交换数据。 所以严格的讲,两个主机进行通信就是两个…...

【雕爷学编程】Arduino动手做(154)---AFMotor电机扩展板模块

37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的&am…...

【RPC】—Protobuf入门

Protobuf入门 ⭐⭐⭐⭐⭐⭐ Github主页👉https://github.com/A-BigTree 笔记链接👉https://github.com/A-BigTree/Code_Learning ⭐⭐⭐⭐⭐⭐ Spring专栏👉https://blog.csdn.net/weixin_53580595/category_12279588.html SpringMVC专栏&a…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

golang循环变量捕获问题​​

在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下: 问题背景 看这个代码片段: fo…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...