【005】基于深度学习的图像语 通信系统
摘要
语义通信是一种新颖的通信方式,可通过传输数据的语义信息提高带宽效率。提出一种用于无线图像传输的系统。该系统基于深度学习技术开发并以端到端(E2E)的方式进行训练。利用深度学习实现语义特征的提取和重建,在发送端提取信源信息不同类型和不同形式的语义特征,在接收端融合各类型语义特征进行目标语义恢复。仿真结果表明,与基准模型相比,所提模型在信道环境恶劣的情况下,具有更好的重建精度。
0. 引言
- 【22】一种基于深度学习的无线图像传输系统, 实 现基于E2E的JSCC,使用峰值信噪(PSNR) 和结构相似性指数 (SSIM)测量重建图像的质量。
- 【25】开展了物联网 (IoT) 设备用于图像传输的研究,通过将两个 DNN 的联合传输识别方案部署在设备端,在识别精度上比传统方案更好。
- 【26】提出了联合特征压缩和传输系统,以处理边缘服务器上有限的计算资源。该方案提高了E2E可靠性,降低了计算复杂度。
- **【28】**文献[28]提出了一种新的航空图像传输范式,在无人机端部署一个轻量级模型,用于感知图像和信道条件的语义传输模块,在接收端通过计算能力更强的基站对收到的信息进一步处理,提高分类精度。
- 【29】提出了基于深度学习的用于传输单模态和多模态数据的多用户语义通信系统,通过在编码器和解码器层之间添加连接来融合多模态数据,实现图像检索和视觉问答等功能。
1. 语义系统模型

1.1 编码器
组成:语义特征提取器、联合语义信道编码器
步骤:
(1)编码器的输入图像S由归一化层预处理,使得每个元素都在[0,1]范围内
(2)通过多个基于神经网络的多级语义特征提取器提取输入图像的不同语义特征
(3)利用联合语义信道编码器将语义特征编码为符号,通过物理通道传输到接收器,传输向量x:x = Tβ (Tα (S) ),Tα (⋅)为多级语义特征提取网络;Tβ (⋅)为联合语义信道编码器,网络参数为α,β。
1.2 解码器
组成:联合语义信道解码器、图像重建模块
步骤:
(1)联合语义信道解码器减轻信号在 AWGN 信道的噪声干扰,并恢复多级语义特征
(2)图像重建模块融合不同层次的语义信息并重建目标图像
(3)反归一化层将每个元素重新缩放为图像像素值 (0~255)。
目标:最小化输入图像S和重建图像 Ŝ之间的平均误差
评估语义失真:均方差 (MSE),,d(S,Ŝ) = 1/n ||S − Ŝ||^2为均方误差分布,N为样本数。

2. 多级图像语义通信模型
高级语义信息:图像的抽象性和通用性
低级语义信息:图像的局部细节语义信息

2.1 多级语义特征提取器
提取器包含三个模块:语义特征提取器、分割特征提取器、低级特征提取器
- 不同模块分别提取不同层级和不同形式的图像语义信息
- 语义特征模块:包含一个预训练的图像字幕模型(ResNet-152模型+LSTM组成),用于提取图像文本形式的高级语义信息(文本嵌入信息)
- 分割特征模块:通过预训练的图像分割模型获取图像分割形式的高级语义信息
- 低级特征模块:主要用于图像细节特征的提取,为高级语义信息做细节补充,实现更丰富的信息重构
- 联合部分:通过concatenate按通道维度将归一化图像和分割特征相结合,并输出
- 直取部分:直接输入归一化后的图像特征
2.2 联合语义信道编解码
提取处理的特征包含:文本形式特征p,图像分割特征a、联合特征f、图像归一化低级特征
2.3 图像重建模块
(1)首先借助双特征融合模块对两种形式的高级语义特征进行融合
(2)通过像素上采样模块对特征信息升维
(3)将相同维度的高级语义信息和低级细节补充信息进行级联操作,通过残差网络对融合后的信息进行提取并重建目标图像


3. 仿真结果与分析
3.1 仿真参数
- **数据集:**MSCOCO、ADE20K
语义特征模块:使用带有文本标签的MSCOCO数据集训练
系统其余部分:使用带有分割标签的ADE20K数据集训练
测试提出的图像无线通信系统:Kodak图像数据集 - AI模型:Pytorch, 使用Adam算法优化,学习率设置为 0.0001,批次大小设置为 32,下采样因子t = 8
相关文章:
【005】基于深度学习的图像语 通信系统
摘要 语义通信是一种新颖的通信方式,可通过传输数据的语义信息提高带宽效率。提出一种用于无线图像传输的系统。该系统基于深度学习技术开发并以端到端(E2E)的方式进行训练。利用深度学习实现语义特征的提取和重建,在发送端提取信…...
基于ssm的社区生活超市的设计与实现
博主介绍:专注于Java技术领域和毕业项目实战。专注于计算机毕设开发、定制、文档编写指导等,对软件开发具有浓厚的兴趣,工作之余喜欢钻研技术,关注IT技术的发展趋势,感谢大家的关注与支持。 技术交流和部署相关看文章…...
长短期记忆网络(LSTM)原理解析
长短期记忆网络(Long Short-Term Memory,简称LSTM)是一种常用于处理序列数据的深度学习模型。它在循环神经网络(Recurrent Neural Network,RNN)的基础上进行了改进,旨在解决传统RNN中的梯度消失…...
vscode debug的方式
在.vscode文件夹下建立launch.json 例子1:调试python 来自 https://github.com/chunleili/tiPBD/tree/amg {"version": "0.2.0","configurations": [{"name": "hpbd 5 5","type": "python&quo…...
微信加粉计数器后台开发
后台包括管理后台与代理后台两部分 管理后台 管理后台自带网络验证卡密系统,一个后台可以完成对Pc端的全部对接,可以自定义修改分组名称 分享等等代理后台 分享页 调用示例 <?php$request new HttpRequest(); $request->setUrl(http://xxxxxxx/api); $request->…...
黑客是什么?想成为黑客需要学习什么?
什么是黑客 在《黑客辞典》里有不少关于“黑客”的定义, 大多和“精于技术”或“乐于解决问题并超越极限”之类的形容相关。然而,若你想知道如何成为一名黑客,只要牢记两点即可。 这是一个社区和一种共享文化,可追溯到那群数十年前使…...
iOS中__attribute__的使用
通过__attribute编译期指令将数据注册至Mach-O指定段的section,可以提供更灵活的注册方式,避免了非必要依赖。通过这种方式不仅仅能够在任何地方注册string,甚至可以注册C函数。 下面的库提供了注册和读取内容的简单方式,主要支持…...
腾讯、飞书等在线表格自动化编辑--python
编辑在线表格 一 目的二 实现效果三 实现过程简介1、本地操作表格之后进入导入在线文档2、直接操作在线文档 四 实现步骤讲解1、实现方法的选择2、导入类库3、设置浏览器代理直接操作已打开浏览器4、在线文档登录5、在线文档表格数据操作6、行数不够自动添加行数 五 代码实现小…...
开源库nlohmann json使用备忘
nlohmann/json是一个用于解析JSON的开源C库,口碑一流,无需额外安装其他第三方库,还支持单个头文件模式,使用起来非常方便直观。 1. 编译 从官网https://github.com/nlohmann/json的Release页面下载单个json.hpp即可直接使用&…...
语音识别开源框架 openAI-whisper
Whisper 是一种通用的语音识别模型。 它是OpenAI于2022年9月份开源的在各种音频的大型数据集上训练的语音识别模型,也是一个可以执行多语言语音识别、语音翻译和语言识别的多任务模型。 GitHub - yeyupiaoling/Whisper-Finetune: 微调Whisper语音识别模型和加速推理…...
php做的中秋博饼游戏之绘制骰子图案功能示例
先看代码 header(Content-Type:image/png); $img imagecreatetruecolor(200, 200); $white imagecolorallocate($img, 255, 255, 255); $grey imagecolorallocate($img, 100, 100, 100); $blue imagecolorallocate($img, 0, 102, 255); $red imagecolorallocate($img, …...
erlang 虚拟机优化参数
sbwt none 将CPU忙等待关闭将有助于降低系统显示的CPU使用率,因为开启了忙等待的BEAM,CPU负载并不代表真实的工作情况; K true 开启epoll IO模型 swt low Sets scheduler wakeup threshold. Defaults to medium. The thresh…...
网络安全能力成熟度模型介绍
一、概述 经过多年网络安全工作,一直缺乏网络安全的整体视角,网络安全的全貌到底是什么,一直挺迷惑的。目前网络安全的分类和厂家非常多,而且每年还会冒出来不少新的产品。但这些产品感觉还是像盲人摸象,只看到网络安…...
python爬虫试手
同事让帮忙在某个网站爬点数据,首次尝试爬虫,遇到的问题及解决思路记录下。 大体需求是需要爬取详情页内的信息,详情页有一定格式规律,但是详情页需要从列表页跳入,列表页中的每一条记录需要鼠标悬停才会弹出跳转链接…...
pandas 笔记:pivot_table 数据透视表
1 基本使用方法 pandas.pivot_table(data, valuesNone, indexNone, columnsNone, aggfuncmean, fill_valueNone, marginsFalse, dropnaTrue, margins_nameAll, observedFalse, sortTrue)2 主要参数 dataDataFramevalues要进行聚合的列index在数据透视表索引(index…...
C#(六十)之Convert类 和 Parse方法的区别
Convert数据类型转换类,从接触C#开始,就一直在用,这篇日志坐下深入的了解。 Convert类常用的类型转换方法 方法 说明 Convert.ToInt32() 转换为整型(int) Convert.ToChar() 转换为字符型(char) Convert.ToString() 转换为字符串型(st…...
暑期代码每日一练Day3:874. 模拟行走机器人
题目 874. 模拟行走机器人 分析 这道题就是个简单的模拟 主要有两点考察点: 对方向数组的运用 方向数组存储的是各个方向的单位向量,也即: 方向XY向北01向东10向南0-1向西-10 存储在数组中,则是方向数组: in…...
肖sir___环境相关的面试题
环境相关面试题 1、请简述多有米环境的搭建、用到了哪些工具和流程介绍? jdk、服务器、代码包、数据库 2、查看当前端口被哪个应用程序占用了? netstat -ntlp |grep 端口号 lsof -i :端口号 ps -ef|grep 端口号 3、Tomcat和Nginx的区别,ngi…...
代理IP、Socks5代理和SK5代理的前沿技术与未来发展趋势
代理IP的前沿技术应用 人工智能与智能代理:结合人工智能技术,代理IP可以更加智能地处理网络请求和数据流,提高代理效率和准确性。区块链与去中心化代理:通过区块链技术,代理IP可以实现去中心化管理和身份验证…...
VM(CentOS7安装和Linux连接工具以及换源)
目录 一、Linux意义 二、安装VMWare 三、centos7安装 1、正式安装CentOS7: 2、安装不了的解决方案 2.1常见问题——虚拟机开机就黑屏的完美解决办法 3、查看、设置IP地址 ① 查看ip地址:ip addr 或者 ifconfig, 注意与windows环境的区别…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
