pandas 笔记:pivot_table 数据透视表
1 基本使用方法
pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False, sort=True)
2 主要参数
data | DataFrame |
values | 要进行聚合的列 |
index | 在数据透视表索引(index)上进行分组的键 |
columns | 在数据透视表列(column)上进行分组的键 |
agg_func | 聚合方式 |
fill_value | 缺省值的填充方式,默认为NAN |
margins | 默认为False,设置为True之后,会计算一个总的value值 |
3 使用方法
3.0 导入数据
import pandas as pd
# Visual Python: Data Analysis > File
vp_df = pd.read_csv('https://raw.githubusercontent.com/visualpython/visualpython/main/visualpython/data/sample_csv/tips.csv')import seaborn as sns
import numpy as np
vp_df.head()
3.1 基本使用
vp_df.pivot_table(index='day',columns='time',values='total_bill')
3.2 index
- aggfunc默认按平均值聚合,values默认只显示可以按平均值聚合的数据
index为一列名字的效果如3.1所示,多列的话,效果如下
vp_df.pivot_table(index=['day','size'],columns='time',values='total_bill')
顺序不同,效果也不同
3.3 values
筛选需要显示的列
values 中一个元素的结果和3.1一样,如果是多个元素,那就是一个value的透视表之后接另一个:
vp_df.pivot_table(index='day',columns='time',values=['total_bill','size'])
3.4 columns
列索引
columns中一个元素的结果和3.1一样,如果是多个元素,那就是
vp_df.pivot_table(index='day',columns=['time','size'],values='total_bill')
3.5 aggfunc
聚合方式,默认为求平均
vp_df.pivot_table(index='day',columns='time',values='total_bill',aggfunc=sum)
3.5.1 不同的列不同的聚合方式
vp_df.pivot_table(index='day',columns='time',values=['total_bill','size'],aggfunc={'total_bill':sum,'size':min},margins=True)
3.5 fill_value
vp_df.pivot_table(index='day',columns='time',values='total_bill',fill_value='Not a Num')
3.6 margins
vp_df.pivot_table(index='day',columns='time',values='total_bill',aggfunc=sum,margins=True)
相关文章:

pandas 笔记:pivot_table 数据透视表
1 基本使用方法 pandas.pivot_table(data, valuesNone, indexNone, columnsNone, aggfuncmean, fill_valueNone, marginsFalse, dropnaTrue, margins_nameAll, observedFalse, sortTrue)2 主要参数 dataDataFramevalues要进行聚合的列index在数据透视表索引(index…...

C#(六十)之Convert类 和 Parse方法的区别
Convert数据类型转换类,从接触C#开始,就一直在用,这篇日志坐下深入的了解。 Convert类常用的类型转换方法 方法 说明 Convert.ToInt32() 转换为整型(int) Convert.ToChar() 转换为字符型(char) Convert.ToString() 转换为字符串型(st…...

暑期代码每日一练Day3:874. 模拟行走机器人
题目 874. 模拟行走机器人 分析 这道题就是个简单的模拟 主要有两点考察点: 对方向数组的运用 方向数组存储的是各个方向的单位向量,也即: 方向XY向北01向东10向南0-1向西-10 存储在数组中,则是方向数组: in…...
肖sir___环境相关的面试题
环境相关面试题 1、请简述多有米环境的搭建、用到了哪些工具和流程介绍? jdk、服务器、代码包、数据库 2、查看当前端口被哪个应用程序占用了? netstat -ntlp |grep 端口号 lsof -i :端口号 ps -ef|grep 端口号 3、Tomcat和Nginx的区别,ngi…...
代理IP、Socks5代理和SK5代理的前沿技术与未来发展趋势
代理IP的前沿技术应用 人工智能与智能代理:结合人工智能技术,代理IP可以更加智能地处理网络请求和数据流,提高代理效率和准确性。区块链与去中心化代理:通过区块链技术,代理IP可以实现去中心化管理和身份验证…...

VM(CentOS7安装和Linux连接工具以及换源)
目录 一、Linux意义 二、安装VMWare 三、centos7安装 1、正式安装CentOS7: 2、安装不了的解决方案 2.1常见问题——虚拟机开机就黑屏的完美解决办法 3、查看、设置IP地址 ① 查看ip地址:ip addr 或者 ifconfig, 注意与windows环境的区别…...
阿里云斩获 4 项年度云原生优秀案例丨阿里云云原生 6 月动态
云原生月度动态 ✦ CLOUD NATIVE 云原生是企业数字创新的最短路径。 《阿里云云原生每月动态》,从趋势热点、产品新功能、服务客户、开源与开发者动态等方面,为企业提供数字化的路径与指南。 本栏目每月更新。 01 趋势热点 🥇 阿里云 S…...
dede图片集上传图片时出错显示FILEID的解决办法
如果遇到过这问题的,就可以照此方法尝试了。 某日,某使用deecms v5.5的网站在后台上传图片时出现如下错误: 作为web生手的我很是迷茫。印象里之前并没有做什么改动,于是百思不得其解。Google、百度、DeDe官网搜索了一大圈…...
【亲测有效】 通过mysql指令 导出数据库中表名 和 表名的备注
标题你可以使用以下MySQL指令来导出数据库中表名和表名的备注: SELECT table_name, table_comment FROM information_schema.tables WHERE table_schema 你的数据库名;将上述指令中的"你的数据库名"替换为你实际使用的数据库名称,执行该指…...
【Nginx08】Nginx学习:HTTP核心模块(五)长连接与连接处理
Nginx学习:HTTP核心模块(五)长连接与连接处理 HTTP 基础知识大家掌握的怎么样呀?对于长连接这一块的内容应该也不是什么新鲜东西了吧。毕竟 HTTP1.1 都已经发布这么久了。今天主要来看的就是长连接相关的配置,另外还会…...

第八十五天学习记录:C++核心:内存分区模型
内存分区模型 C程序在执行时,将内存大方向划分为4个区域 1、代码区:存放函数体的二进制代码,由操作系统进行管理 2、全局区:存放全局变量和静态变量以及常量 3、栈区:由编译器自动分配释放,存放函数的参数…...
Chrome远程调试webview
网址 谷歌远程调试解决方案 https://blog.csdn.net/m0_56516186/article/details/131260563Chrome远程调试webview https://blog.csdn.net/weixin_44801980/article/details/117755550...

爬虫与反爬虫的攻防对抗
一、爬虫的简介 1 概念 爬虫最早源于搜索引擎,它是一种按照一定的规则,自动从互联网上抓取信息的程序,又被称为爬虫,网络机器人等。按爬虫功能可以分为网络爬虫和接口爬虫,按授权情况可以分为合法爬虫和恶意爬虫。恶…...
【机器学习】特征工程 - 字典特征提取
「作者主页」:士别三日wyx 「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」:对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 字典特征提取 一、特征提取API一、提取数字特征二、特征名字三、返回原始数据特征工…...
用户交互----进入游戏
一、增加交互----点击和拖动 1、点击鼠标画点的程序 设置 import pygame # Setup pygame.init() screen pygame.display.set_mode([800,600]) pygame.display.set_caption("单击画圆点") keep_going True RED (255,0,0) …...

排序算法 - 快速排序(4种方法实现)
快速排序 快速排序是啥?三数取中:1.挖坑法(推荐掌握)2.前后指针法(推荐掌握)3.左右指针法(霍尔版本)(容易出错)4.非递归实现 本篇文章的源代码在这࿰…...

C++入门知识点
目录 命名空间 命名空间定义 命名空间使用 法一:加命名空间名称及作用域限定符:: 法二:使用using部分展开(授权)某个命名空间中的成员 法三:使用using对整个命名空间全部展开(授权…...

开眼界了,AI绘画商业化最强玩家是“淘宝商家”
图片来源:由无界AI生成 7月,2023世界人工智能大会在上海召开,顶尖的投资人、创业者都去了。 创业者吐槽:投我啊,我很强。 投资人反问:你的商业模式是什么?护城河是什么? 创业者投资人…...

机器学习与深度学习——自定义函数进行线性回归模型
机器学习与深度学习——自定义函数进行线性回归模型 目的与要求 1、通过自定义函数进行线性回归模型对boston数据集前两个维度的数据进行模型训练并画出SSE和Epoch曲线图,画出真实值和预测值的散点图,最后进行二维和三维度可视化展示数据区域。 2、通过…...

大屏项目也不难
项目环境搭建 使用create-vue初始化项目 npm init vuelatest准备utils模块 业务背景:大屏项目属于后台项目的一个子项目,用户的token是共享的 后台项目 - token - cookie 大屏项目要以同样的方式把token获取到,然后拼接到axios的请求头中…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...