排序算法 - 快速排序(4种方法实现)
快速排序
- 快速排序是啥?
- 三数取中:
- 1.挖坑法(推荐掌握)
- 2.前后指针法(推荐掌握)
- 3.左右指针法(霍尔版本)(容易出错)
- 4.非递归实现
本篇文章的源代码在这,需要自取:Gitee
快速排序是啥?
快速排序是一种常见的排序算法,其基本原理是分治和递归。它的基本思路是,在数组中选择一个元素作为基准值,然后将数组中小于基准值的元素移动到它的左边,大于基准值的元素移动到它的右边。然后对左右两个子数组递归地重复这个过程,直到子数组的大小为1或0。
在实现快速排序时,可以使用 三数取中法来选取基准值和分区,这样可以有效避免最坏情况的发生。
三数取中法:从待排序区间的首、中、尾三个位置上的数选取一个中间值作为基准值。
三数取中:
//三数取中
int GetMidIndex(int* a, int left, int right)
{int mid = (left + right) / 2;if (a[left] < a[mid]){if (a[mid] < a[right]){return mid;}else if (a[left] < a[right]){return right;}elsereturn left;}else//a[left] > a[mid]{if (a[mid] > a[right]){return mid;}else if(a[left] > a[right]){return right;}else{return left;}}
}
GetMidIndex 函数接受一个整型数组 a,以及要选择基准元素的左右边界索引 left 和 right。函数首先计算出中间索引 mid,通过 (left + right) / 2 的方式获得。
然后,函数根据数组中三个元素 a[left]、a[mid] 和 a[right] 的值进行比较,以确定基准元素的索引。
如果 a[left] 小于 a[mid],则继续比较 a[mid] 和 a[right]。如果 a[mid] 小于 a[right],说明 a[mid] 是中间的元素,其值介于 a[left] 和 a[right] 之间,因此将 mid 作为基准元素的索引返回。
如果 a[mid] 不小于 a[right],则根据 a[left] 和 a[right] 的大小关系来选择基准元素的索引。如果 a[left] 小于 a[right],说明 a[left] 是中间的元素,其值介于 a[mid] 和 a[right] 之间,因此将 right 作为基准元素的索引返回。否则,如果 a[left] 大于等于 a[right],说明 a[right] 是中间的元素,其值介于 a[left] 和 a[mid] 之间,因此将 left 作为基准元素的索引返回。
如果 a[left] 大于 a[mid],则继续比较 a[mid] 和 a[right]。如果 a[mid] 大于 a[right],说明 a[mid] 是中间的元素,其值介于 a[left] 和 a[right] 之间,因此将 mid 作为基准元素的索引返回。
如果 a[mid] 不大于 a[right],则根据 a[left] 和 a[right] 的大小关系来选择基准元素的索引。如果 a[left] 大于 a[right],说明 a[left] 是中间的元素,其值介于 a[right] 和 a[mid] 之间,因此将 right 作为基准元素的索引返回。否则,如果 a[left] 小于等于 a[right],说明 a[left] 是中间的元素,其值介于 a[mid] 和 a[right] 之间,因此将 left 作为基准元素的索引返回。
通过使用三数取中法选择基准元素,可以在大多数情况下选取到接近中间值的元素,提高快速排序的效率和性能,并减少最坏情况的发生
1.挖坑法(推荐掌握)
以下是挖坑法的详细过程:
- 选择一个值基准值(在这用三数取中)。通常情况下,选择数组中第一个元素作为基准值。
- 将数组中小于基准值的元素移动到它的左边,大于基准值的元素移动到它的右边。(左边找大,右边找小)。
- 对左右两个子数组递归地重复上述过程,直到子数组的大小为1或0。
- 合并子数组,得到排序后的数组。
//挖坑法
int PartSort2(int* a, int left, int right)
{//三数取中int midi = GetMidIndex(a, left, right);Swap(&a[midi], &a[left]);//把中间值放到left位置int keyi = left;while (left < right){while (left < right && a[right] >= a[keyi]){right--;}Swap(&a[keyi], &a[right]);keyi = right;while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[keyi], &a[left]);keyi = left;}return keyi;
}//快排
void QuickSort(int* a, int left,int right)
{if (left >= right){return ;}int keyi = PartSort2(a, left, right);//[left,keyi-1][keyi][keyi+1,right]QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
}
- PartSort2 函数是挖坑法的核心实现。它接受一个整型数组 a,以及要排序的左右边界索引 left 和 right。函数首先选择一个中间索引 midi,并将 a[midi] 与 a[left] 进行交换,将 a[left] 作为基准元素。
- 然后,函数使用两个指针 left 和 right 在数组中进行扫描。从右边开始,当 a[right] 大于等于基准元素 a[keyi] 时,将 right 指针左移,直到找到小于基准元素的元素为止。
- 然后,将该元素与 a[keyi] 进行交换,将 keyi 更新为 right。
- 接下来,从左边开始,当 a[left] 小于等于基准元素 a[keyi] 时,将 left 指针右移,直到找到大于基准元素的元素为止。
- 然后,将该元素与 a[keyi] 进行交换,将 keyi 更新为 left。
- 重复这个过程直到 left 和 right 指针相遇,然后返回 keyi,该索引将数组分为两部分:左边的元素小于等于基准元素,右边的元素大于等于基准元素。
QuickSort 函数接受一个整型数组 a,以及要排序的左右边界索引 left 和 right。首先,它检查是否满足递归终止条件,即 left >= right,如果满足条件,则直接返回。否则,它调用PartSort2 函数获取基准元素的索引 keyi,然后将数组分为三部分:[left, keyi-1]、[keyi] 和 [keyi+1, right]。接着,它递归调用 QuickSort 函数对左边和右边的子数组进行排序。
2.前后指针法(推荐掌握)
//前后指针法
int PartSort3(int* a, int left, int right)
{int midi = GetMidIndex(a, left, right);Swap(&a[midi], &a[left]);//end找小,如果 a[end]<a[keyi],++begin(这时begin位置的值一定比keyi位置值大),再交换begin和end的位置 int keyi = left;int begin = left;int end = left+1;while (end <=right){if (a[end] < a[keyi] ){++begin;Swap(&a[begin], &a[end]);}++end;}Swap(&a[begin], &a[keyi]);return begin;
}//快排
void QuickSort(int* a, int left,int right)
{if (left >= right){return ;}int keyi = PartSort3(a, left, right);//[left,keyi-1][keyi][keyi+1,right]QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
}
- PartSort3 函数使用了前后指针法(双指针法)进行数组分区。函数接受一个整型数组 a,以及要分区的左右边界索引 left 和 right。
- 首先,函数调用 GetMidIndex 函数获取基准元素的索引 midi,然后将 a[midi] 和 a[left] 进行交换,将 a[left] 设置为基准元素。
- 接下来,函数初始化两个指针 begin 和 end,分别从 left 和 left + 1 开始遍历数组。
- 在遍历过程中,end 指针向右移动,扫描数组元素。当 a[end] 小于基准元素 a[keyi] 时,将 begin 指针右移一位,并交换 a[begin] 和 a[end] 的值。这样,较小的元素就会被移动到 begin 的位置,而 begin 之前的元素都小于基准元素。
- 最后,将基准元素 a[keyi] 移动到合适的位置,即将其与 a[begin] 交换。此时,数组被分为两部分:左边的元素小于基准元素,右边的元素大于等于基准元素。
- 最后,函数返回基准元素的索引 begin。
QuickSort函数作用同上
3.左右指针法(霍尔版本)(容易出错)
快速排序的左右指针法(双指针法)是一种常见的实现方式,它利用两个指针从数组的两端开始,逐步向中间移动,并进行元素的比较和交换,以实现数组的分区和排序。
其基本思想如下:
-
选择一个基准元素(通常是数组的第一个元素)。
-
使用两个指针,一个从左边开始(一般称为左指针),一个从右边开始(一般称为右指针)。
-
左指针从左边开始向右移动,直到找到一个大于基准元素的元素。
-
右指针从右边开始向左移动,直到找到一个小于基准元素的元素。
-
如果左指针的位置小于右指针的位置,则交换左指针和右指针所指向的元素。
-
重复步骤 3-5,直到左指针和右指针相遇。
-
将基准元素与左指针所指向的元素进行交换,此时基准元素的位置已经确定。
-
根据基准元素的位置,将数组分成两部分,左边的元素都小于基准元素,右边的元素都大于基准元素。
-
对基准元素左右两部分的子数组分别重复以上步骤,直到所有的子数组都有序。
//左右指针(霍尔版本)(容易出错)
int PartSort1(int* a, int left,int right)
{int midi = GetMidIndex(a, left, right);Swap(&a[midi], &a[left]);int keyi = left;while (left < right){while (left < right && a[keyi]<=a[right]){right--;}while (left < right && a[keyi]>=a[left]){left++;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);return left;
}//快排void QuickSort(int* a, int left,int right){if (left >= right){return ;}int keyi = PartSort1(a, left, right);//[left,keyi-1][keyi][keyi+1,right]QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);}
- PartSort1 函数使用左右指针法(霍尔版本)进行数组分区。函数接受一个整型数组 a,以及要分区的左右边界索引 left 和 right。
- 首先,函数调用 GetMidIndex 函数获取基准元素的索引 midi,然后将 a[midi] 和 a[left] 进行交换,将 a[left] 设置为基准元素。
- 接下来,函数使用两个指针 left 和 right 分别从数组的左右两端开始遍历。
- 在遍历过程中,首先从右边开始,找到第一个小于基准元素的元素,将 right 指针左移一位,直到找到小于基准元素的元素或 left 和 right 指针相遇。
- 然后,从左边开始,找到第一个大于基准元素的元素,将 left 指针右移一位,直到找到大于基准元素的元素或 left 和 right 指针相遇。
- 如果 left 小于 right,则交换 a[left] 和 a[right],将小于基准元素的元素移动到左侧,大于基准元素的元素移动到右侧。
- 重复上述步骤,直到 left 和 right 指针相遇,此时完成了一次分区。将基准元素 a[keyi] 移动到合适的位置,即将其与 a[left] 交换。
- 最后,函数返回基准元素的索引 left。
QuickSort函数同上
4.非递归实现
-
非递归的快速排序使用栈来存储待处理的子数组的起始和结束位置。初始时,将整个数组的起始和结束位置压入栈中。
-
然后,进入循环,从栈中弹出一个子数组,对其进行分区操作,得到基准元素的位置。根据分区的结果,将子数组划分为两个部分:一个部分是基准元素左边的子数组,另一个部分是基准元素右边的子数组。
-
接下来,将需要进一步处理的子数组的起始和结束位置压入栈中。这样,栈中存储的就是待处理的子数组。
-
重复以上步骤,直到栈为空。这意味着所有的子数组都已经被处理完毕,排序完成。
-
通过使用栈来模拟递归调用过程,非递归的快速排序能够有效地对数组进行分区和排序,同时避免了递归带来的函数调用开销。这种实现方式通常具有较好的性能和效率,特别适用于处理大规模的数据集。
void QuickSortNonR(int* a, int begin, int end)
{ST st;StackInit(&st);StackPush(&st, end);StackPush(&st,begin);while (!StackEmpty(&st)){int left = StackTop(&st);StackPop(&st);int right = StackTop(&st);StackPop(&st);int keyi = PartSort2(a, left, right);//[left,keyi-1][keyi][keyi+1,right]if(keyi+1<right){StackPush(&st, right);StackPush(&st, keyi + 1);}if (left < keyi-1){StackPush(&st, keyi - 1);StackPush(&st, left);}}StackDestory(&st);
}
- QuickSortNonR 函数实现了非递归版本的快速排序。它接受一个整型数组 a,以及要排序的起始位置 begin 和结束位置 end。
- 首先,函数创建一个栈 st,用于存储待处理的子数组的起始和结束位置。将 end 和 begin 分别压入栈中,表示对整个数组进行排序。
- 进入循环,只要栈不为空,就执行以下操作:
- 从栈中弹出两个元素,分别赋值给 left 和 right,表示当前要处理的子数组的起始和结束位置。
- 调用 PartSort2 函数对子数组进行分区,得到基准元素的位置 keyi。
- 根据分区的结果,将子数组划分为 [left, keyi-1]、[keyi]、[keyi+1, right] 三个部分。
- 如果 keyi + 1 < right,说明右侧子数组仍然有元素需要排序,将右侧子数组的起始位置 keyi + 1 和结束位置 right 压入栈中。
- 如果 left < keyi - 1,说明左侧子数组仍然有元素需要排序,将左侧子数组的起始位置 left 和结束位置 keyi - 1 压入栈中。
- 循环继续进行,直到栈为空,表示所有子数组都被处理完毕。
- 最后,销毁栈 st,完成非递归版本的快速排序。
相关文章:

排序算法 - 快速排序(4种方法实现)
快速排序 快速排序是啥?三数取中:1.挖坑法(推荐掌握)2.前后指针法(推荐掌握)3.左右指针法(霍尔版本)(容易出错)4.非递归实现 本篇文章的源代码在这࿰…...

C++入门知识点
目录 命名空间 命名空间定义 命名空间使用 法一:加命名空间名称及作用域限定符:: 法二:使用using部分展开(授权)某个命名空间中的成员 法三:使用using对整个命名空间全部展开(授权…...

开眼界了,AI绘画商业化最强玩家是“淘宝商家”
图片来源:由无界AI生成 7月,2023世界人工智能大会在上海召开,顶尖的投资人、创业者都去了。 创业者吐槽:投我啊,我很强。 投资人反问:你的商业模式是什么?护城河是什么? 创业者投资人…...

机器学习与深度学习——自定义函数进行线性回归模型
机器学习与深度学习——自定义函数进行线性回归模型 目的与要求 1、通过自定义函数进行线性回归模型对boston数据集前两个维度的数据进行模型训练并画出SSE和Epoch曲线图,画出真实值和预测值的散点图,最后进行二维和三维度可视化展示数据区域。 2、通过…...

大屏项目也不难
项目环境搭建 使用create-vue初始化项目 npm init vuelatest准备utils模块 业务背景:大屏项目属于后台项目的一个子项目,用户的token是共享的 后台项目 - token - cookie 大屏项目要以同样的方式把token获取到,然后拼接到axios的请求头中…...
c#webclient请求中经常出现的几种异常
WebClient是.NET Framework提供的用于HTTP请求的类,如果在使用WebClient时遇到异常,我们可以根据具体的异常类型进行处理。 以下是一些常见的WebClient异常及其处理方法: System.Net.WebException WebException通常是由于请求超时、网络连…...

设计模式-原型模式
目录 一、传统方式 二、原型模式 三、浅拷贝和深拷贝 克隆羊问题: 现在有一只羊tom,姓名为: tom,年龄为: 1,颜色为: 白色,请编写程序创建和tom羊属性完全相同的10只羊。 一、传统方式 public class Client {public static vo…...

sentinel介绍-分布式微服务流量控制
官网地址 https://sentinelguard.io/ 介绍 随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、流量整形、熔断降级、系统自…...

基于Redisson的Redis结合布隆过滤器使用
一、场景 缓存穿透问题 一般情况下,先查询Redis缓存,如果Redis中没有,再查询MySQL。当某一时刻访问redis的大量key都在redis中不存在时,所有查询都要访问数据库,造成数据库压力顿时上升,这就是缓存穿透。…...
BrowserRouter刷新404解决方案
1、本地开发环境 在js脚本命令里加上 --history-api-fallback "scripts": {"serve": "webpack serve --config webpack.dev.js --history-api-fallback" }2、生产环境,可以修改 nglnx 配置: server {listen XXXX; //端口号…...

解决appium-doctor报opencv4nodejs cannot be found
一、下载cmake 在CMake官网下载:cmake-3.6.1-win64-x64.msi 二、安装cmake cmake安装过程 在安装时要选择勾选为所有用户添加CMake环境变量 三、检查cmake安装 重新管理员打开dos系统cmd命令提示符,输入cmake -version cmake -version四、安装opencv4no…...

安卓通过adb pull和adb push 手机与电脑之间传输文件
1.可以参考这篇文章 https://www.cnblogs.com/hhddcpp/p/4247923.html2.根据上面的文章,我做了如下修改 //设置/system为可读写: adb remount //复制手机中的文件到电脑中。需要在电脑中新建一个文件夹,我新建的文件夹为ce文件夹 adb pull …...
java常用的lambda表达式总结
一、概述 lambda表达式是JDK8中的一个新特性,对某些匿名内部类进行简化,是函数式编程; 二、基本格式 (参数列表)->{方法体代码} 三、Stream流 是jdk8中的新特性,将数据以流的形式进行操作 三、常用方法解析 3.1、准备工作 …...

分布式应用之zookeeper集群+消息队列Kafka
一、zookeeper集群的相关知识 1.zookeeper的概念 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能…...
GStreamer学习笔记(四)
Time management 仅当管道处于PLAYING状态时,可以刷新屏幕。如果不在PLAYING状态,什么都不做,因为大多数查询都会失败。 函数与知识点 GstClockTime 说明:所需的超时时间必须以GstClockTime的形式指定。即以纳秒(ns…...

DBeaver连接华为高斯数据库 DBeaver连接Gaussdb数据库 DBeaver connect Gaussdb
DBeaver连接华为高斯数据库 DBeaver连接Gaussdb数据库 DBeaver connect Gaussdb 一、概述 华为GaussDB出来已经有一段时间,最近工作中刚到Gauss数据库。作为coder,那么如何通过可视化工具来操作Gauss呢? 本文将记录使用免费、开源的DBeaver来…...

.net core 2.1 简单部署IIS运行
netcore的项目不像netFramework那么方便部署到iis还是要费点功夫的 比如我想把这个netcore2.1的项目部署到iis并运行: 按照步骤走: 一、确认自己的netcore环境 1、需要安装下面3个环境包(如果电脑已安装请忽略) 检查是否安装cmd命令:cmd&…...

提高视觉检测系统稳定性的隐藏办法——10G高速图像采集卡
提高视觉检测系统稳定性的隐藏办法——10G高速图像采集卡 目前,随着我国各方面配套基础设施建设的完善,企业技术、资金的积累,各行各业积极探索和大胆的尝试机器视觉技术,实现工业自动化、智能化。在机器视觉系统的使用过程中&am…...
注解方式实现数据库字段加密与解密
目录 前言实现步骤定义注解加密工具类定义mybatis拦截器 总结 前言 一些敏感信息存入数据需要进行加密处理,比如电话号码,身份证号码等,从数据库取出到前端展示时需要解密,如果分别在存入取出时去做处理,会很繁锁&…...

C\C++ 使用socket判断ip是否能连通
文章作者:里海 来源网站:https://blog.csdn.net/WangPaiFeiXingYuan 简介: 使用socket判断ip是否能联通 效果: 代码: #include <iostream> #include <cstdlib> #include <cstdio> #include &…...

Houdini POP入门学习05 - 物理属性
接下来随着教程学习碰撞部分,当粒子较为复杂或者下载了一些粒子模板进行修改时,会遇到一些较奇怪问题,如粒子穿透等,这些问题实际上可以通过调节参数解决。 hip资源文件:https://download.csdn.net/download/grayrail…...
Matlab | matlab中的图像处理详解
MATLAB 图像处理详解 这里写目录标题图像处理 MATLAB 图像处理详解一、图像基础操作1. 图像读写与显示2. 图像信息获取3. 图像类型转换二、图像增强技术1. 对比度调整2. 去噪处理3. 锐化处理三、图像变换1. 几何变换2. 频域变换四、图像分割1. 阈值分割2. 边缘检测3. 区域分割五…...

Prompt提示工程指南#Kontext图像到图像
重要提示:单个prompt的最大token数为512 # 核心能力 Kontext图像编辑系统能够: 理解图像上下文语义实现精准的局部修改保持原始图像风格一致性支持复杂的多步迭代编辑 # 基础对象修改 示例场景:改变汽车颜色 Prompt设计: Change …...
【前端】每日一道面试题6:解释Promise.any和Promise.allSettled的使用场景及区别。
Promise.any() 和 Promise.allSettled() 是 JavaScript 中用于处理异步操作的两种不同策略的 Promise 组合器,它们的核心区别在于逻辑目标与结果处理方式: 1. Promise.any() 使用场景: 需要获取 首个成功结果(类似竞速成功优先&…...
东芝Toshiba DP-4528AG打印机信息
东芝 Toshiba DP 4528AG 是一款黑白激光数码复合机: 类型:激光数码复合机,涵盖复印、打印、扫描、传真功能,能满足办公室多样化的文档处理需求。速度类型:中速,黑白复印和打印速度可达 45 页 / 分钟&#…...

Web 3D协作平台开发案例:构建制造业远程设计与可视化协作
HOOPS Communicator为开发者提供了丰富的定制化能力,助力他们在实现强大 Web 3D 可视化功能的同时,灵活构建符合特定业务需求的工程应用。对于希望构建在线协同设计工具的企业而言,如何在保障性能与用户体验的前提下实现高效开发,…...

OS11.【Linux】vim文本编辑器
目录 1.四种模式 命令模式 几个命令 插入模式 底行模式 一图展示三种模式之间的关系 2.分屏(多文件操作) 3.配置vim的原理 4.脚本一键配置vim CentOS 7 x86_64 其他发行版 5.NeoVim(推荐) vim文本编辑器是一个多模式的编辑器,因此先介绍它的四种模式 附vim的官网:…...

AI书签管理工具开发全记录(十三):TUI基本框架搭建
文章目录 AI书签管理工具开发全记录(十三):TUI基本框架搭建前言 📝1.TUI介绍 🔍2. 框架选择 ⚙️3. 功能梳理 🎯4. 基础框架搭建⚙️4.1 安装4.2 参数设计4.3 绘制ui4.3.1 设计结构体4.3.2 创建头部4.3.3 创…...

强化学习入门:Gym实现CartPole随机智能体
前言 最近想开一个关于强化学习专栏,因为DeepSeek-R1很火,但本人对于LLM连门都没入。因此,只是记录一些类似的读书笔记,内容不深,大多数只是一些概念的东西,数学公式也不会太多,还望读者多多指教…...
三、元器件的选型
前言:我们确立了题目的功能后,就可以开始元器件的选型,元器件的选型关乎到我们后面代码编写的一个难易。 一、主控的选择 主控的选择很大程度上决定我们后续使用的代码编译器,比如ESP32使用的是VScode,或者Arduino&a…...