EfficientNet论文笔记
EfficientNet论文笔记
通过NAS平衡了channel,depth,resolution,发现在相同的FLOPs下,同时增加 depth和 resolution的效果最好。
数据集效果小于resolution怎么办?


EfficientNet—b0框架
表格中每个MBConv后会跟一个数字1或6,这里的1或6就是倍率因子n,即MBConv中第一个1x1的卷积层会将输入特征矩阵的channels扩充为n倍,其中k3x3或k5x5表示MBConv中Depthwise Conv所采用的卷积核大小。Channels表示通过该Stage后输出特征矩阵的Channels。

MBConv结构

Swish激活函数+SE模块
- 第一个升维的1x1卷积层,它的卷积核个数是输入特征矩阵channel的n倍,当n等于1不需要该层。
- 仅当输入MBConv结构的特征矩阵与输出的特征矩阵shape相同时才使用。在源码实现中只有使用shortcut的时候才有Dropout层。
SE模块:
第一个激活函数替换成Swish激活函数

其他版本的详细参数:

input_size代表训练网络时输入网络的图像大小width_coefficient代表channel维度上的倍率因子,比如在 EfficientNetB0中Stage1的3x3卷积层所使用的卷积核个数是32,那么在B6中就是 32 × 1.8 = 57.6接着取整到离它最近的8的整数倍即56,其它Stage同理(加速运算)。depth_coefficient代表depth维度上的倍率因子(仅针对Stage2到Stage8),比如在EfficientNetB0中Stage7的 Li=4,那么在B6中就是 4(block) × 2.6 = 10.4 接着向上取整即11drop_connect_rate是在MBConv结构中dropout层使用的drop_rate,dropout_rate是最后一个全连接层前的dropout层(在stage9的Pooling与FC之间)的dropout_rate。
NAS:Neural Architecture Search
强化学习

相关文章:
EfficientNet论文笔记
EfficientNet论文笔记 通过NAS平衡了channel,depth,resolution,发现在相同的FLOPs下,同时增加 depth和 resolution的效果最好。 数据集效果小于resolution怎么办? EfficientNet—b0框架 表格中每个MBConv后会跟一个…...
系统学习Linux-SSH远程服务(二)
概念 安全外壳协议,提供安全可靠的远程连接 特点 ssh是工作在传输层和应用层的协议 ssh提供了一组管理命令 ssh 远程登陆 scp 远程拷贝 sftp 远程上传下载 ssh-copy-id ssh keygen 生成 提供了多种身份验证机制 身份验证机制 密码验证 需要提供密码 密…...
PyTorch训练RNN, GRU, LSTM:手写数字识别
文章目录 pytorch 神经网络训练demoResult参考来源 pytorch 神经网络训练demo 数据集:MNIST 该数据集的内容是手写数字识别,其分为两部分,分别含有60000张训练图片和10000张测试图片 图片来源:https://tensornews.cn/mnist_intr…...
基于深度学习的高精度道路瑕疵检测系统(PyTorch+Pyside6+YOLOv5模型)
摘要:基于深度学习的高精度道路瑕疵(裂纹(Crack)、检查井(Manhole)、网(Net)、裂纹块(Patch-Crack)、网块(Patch-Net)、坑洼块&#x…...
【裸辞转行】是告别,也是新的开始
一年多了没有更新,是因为去年身体加心理因素辞职了,并且大概率不会再做程序员了,嗯。本来觉得可能再也不会打开 CSDN 了,想了想,还是来做个告别吧,任何事情都该有始有终才对。 回忆碎碎念 是在去年的 11 …...
了解交换机接口的链路类型(access、trunk、hybrid)
上一个章节中讲到了vlan的作用及使用,这篇了解一下交换机接口的链路类型和什么情况下使用 vlan在数据包中是如何体现的,在上一篇的时候提到测试了一下,从PC1去访问PC4的时候,只从E0/0/2发送给了E0/0/3这是,因为两个接…...
Android系统启动流程分析
当按下Android系统的开机电源按键时候,硬件会触发引导芯片,执行预定义的代码,然后加载引导程序(BootLoader)到RAM,Bootloader是Android系统起来前第一个程序,主要用来拉起Android系统程序,Android系统被拉起…...
如何在Ubuntu上安装OpenneBula
OpenNebula是一个开源云计算平台,允许我们在完全虚拟化云中组合和管理VMware和KVM虚拟机 第1步:安装MariaDB数据库服务器 OpenNebula还需要一个数据库服务器来存储其内容。 安装MariaDB: 1 2 sudo apt update sudo apt install mariadb-s…...
解决MySQL中分页查询时多页有重复数据,实际只有一条数据的问题
0 前言 有一个离奇的BUG,在查询时,第一页跟第二页有一个共同的数据。有的数据却不显示。 后来发现是在SQL排序时没用主键排序。 解决:使用主键排序 以下是我准备的举例,可以自己试试。 1 数据准备 SET NAMES utf8mb4; SET FORE…...
【数据结构】时间复杂度---OJ练习题
目录 🌴时间复杂度练习 📌面试题--->消失的数字 题目描述 题目链接:面试题 17.04. 消失的数字 🌴解题思路 📌思路1: malloc函数用法 📌思路2: 📌思路3&…...
京东自动化功能之商品信息监控是否有库存
这里有两个参数,分别是area和skuids area是地区编码,我这里统计了全国各个区县的area编码,用户可以根据实际地址进行构造skuids是商品的信息ID填写好这两个商品之后,会显示两种状态,判断有货或者无货状态,详情如下图所示 简单编写下python代码,比如我们的地址是北京市…...
【SwitchyOmega】SwitchyOmega 安装及使用
文章目录 安装教程使用教程 安装教程 SwitchyOmega 谷歌商店下载链接:https://chrome.google.com/webstore/detail/proxy-switchyomega/padekgcemlokbadohgkifijomclgjgif?hlen-US 在谷歌商店搜索 SwitchyOmega, 选择 Proxy SwitchyOmega 点击 Add t…...
CentOS5678 repo源 地址 阿里云开源镜像站
CentOS5678 repo 地址 阿里云开源镜像站 https://mirrors.aliyun.com/repo/ CentOS-5.repo https://mirrors.aliyun.com/repo/Centos-5.repo [base] nameCentOS-$releasever - Base - mirrors.aliyun.com failovermethodpriority baseurlhttp://mirrors.aliyun.com/centos/$r…...
【LLM】Langchain使用[二](模型链)
文章目录 1. SimpleSequentialChain2. SequentialChain3. 路由链 Router Chain Reference 1. SimpleSequentialChain 场景:一个输入和一个输出 from langchain.chat_models import ChatOpenAI #导入OpenAI模型 from langchain.prompts import ChatPromptTempla…...
简单机器学习工程化过程
1、确认需求(构建问题) 我们需要做什么? 比如根据一些输入数据,预测某个值? 比如输入一些特征,判断这个是个什么动物? 这里我们要可以尝试分析一下,我们要处理的是个什么问题&…...
【MongoDB】SpringBoot整合MongoDB
【MongoDB】SpringBoot整合MongoDB 文章目录 【MongoDB】SpringBoot整合MongoDB0. 准备工作1. 集合操作1.1 创建集合1.2 删除集合 2. 相关注解3. 文档操作3.1 添加文档3.2 批量添加文档3.3 查询文档3.3.1 查询所有文档3.3.2 根据id查询3.3.3 等值查询3.3.4 范围查询3.3.5 and查…...
关于游戏引擎(godot)对齐音乐bpm的技术
引擎默认底层 1. _process(): 每秒钟调用60次(无限的) 数学 1. bpm1分钟节拍数量60s节拍数量 bpm120 60s120拍 2. 每拍子时间 60/bpm 3. 每个拍子触发周期所需要的帧数 每拍子时间*60(帧率) 这个是从帧数级别上对齐拍子的时间&#x…...
【Go】实现一个代理Kerberos环境部分组件控制台的Web服务
实现一个代理Kerberos环境部分组件控制台的Web服务 背景安全措施引入的问题SSO单点登录 过程整体设计路由反向代理登录会话组件代理YarnHbase 结果 背景 首先要说明下我们目前有部分集群的环境使用的是HDP-3.1.5.0的大数据集群,除了集成了一些自定义的服务以外&…...
Spring Security 6.x 系列【63】扩展篇之匿名认证
有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 3.1.0 本系列Spring Security 版本 6.1.0 本系列Spring Authorization Server 版本 1.1.0 源码地址:https://gitee.com/pearl-organization/study-spring-security-demo 文章目录 1. 概述2. 配置3. Anonymo…...
供应链管理系统有哪些?
1万字干货分享,国内外 20款 供应链管理软件都给你讲的明明白白。如果你还不知道怎么选择,一定要翻到第三大段,这里我将会通过8年的软件产品选型经验告诉你,怎么样才能快速选到适合自己的软件工具。 (为防后续找不到&a…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...
Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
全面解析数据库:从基础概念到前沿应用
在数字化时代,数据已成为企业和社会发展的核心资产,而数据库作为存储、管理和处理数据的关键工具,在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理,到社交网络的用户数据存储,再到金融行业的交易记录处理&a…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...
从实验室到产业:IndexTTS 在六大核心场景的落地实践
一、内容创作:重构数字内容生产范式 在短视频创作领域,IndexTTS 的语音克隆技术彻底改变了配音流程。B 站 UP 主通过 5 秒参考音频即可克隆出郭老师音色,生成的 “各位吴彦祖们大家好” 语音相似度达 97%,单条视频播放量突破百万…...
