flink 报错:Caused by: java.lang.RuntimeException: Assigned key must not be null!
问题描述
不同情况下需要找对应的解决方法,这里介绍的解决方法不能拓展到别的场景。
场景描述: flink job 的开发过程中遇到这样的需求,需要先 map 处理,然后把返回的 DataStream 作为输入,流入别的 map 中。这里我们遇到的场景是从原来的 map 流到 AsyncDataStream 中。
大概的 java 代码为:
SingleOutputStreamOperator<xxxxx> task = source.rebalance().map(new XXXXMapFunction()).uid("xxxxxx").name("xxxx");DataStream<yyyyy> dataStreamHyKontrast = AsyncDataStream.unorderedWait(task, new YYYYRequestMapFunction(), defaultTimeoutMills, TimeUnit.SECONDS).name("yyyyyy").uid("yyyyyy");.......
问题描述: 开发完成本地运行flink入口 main 方法的时候,错误提示如下:
Caused by: java.lang.RuntimeException: Assigned key must not be null!at org.apache.flink.streaming.runtime.io.RecordWriterOutput.pushToRecordWriter(RecordWriterOutput.java:103)at org.apache.flink.streaming.runtime.io.RecordWriterOutput.collect(RecordWriterOutput.java:87)at org.apache.flink.streaming.runtime.io.RecordWriterOutput.collect(RecordWriterOutput.java:43)at org.apache.flink.streaming.api.operators.CountingOutput.collect(CountingOutput.java:50)at org.apache.flink.streaming.api.operators.CountingOutput.collect(CountingOutput.java:28)at org.apache.flink.streaming.api.operators.StreamMap.processElement(StreamMap.java:38)at org.apache.flink.streaming.runtime.tasks.CopyingChainingOutput.pushToOperator(CopyingChainingOutput.java:71)at org.apache.flink.streaming.runtime.tasks.CopyingChainingOutput.collect(CopyingChainingOutput.java:46)at org.apache.flink.streaming.runtime.tasks.CopyingChainingOutput.collect(CopyingChainingOutput.java:26)at org.apache.flink.streaming.api.operators.TimestampedCollector.collect(TimestampedCollector.java:50)at org.apache.flink.streaming.api.operators.async.queue.StreamRecordQueueEntry.emitResult(StreamRecordQueueEntry.java:64)at org.apache.flink.streaming.api.operators.async.queue.UnorderedStreamElementQueue$Segment.emitCompleted(UnorderedStreamElementQueue.java:272)at org.apache.flink.streaming.api.operators.async.queue.UnorderedStreamElementQueue.emitCompletedElement(UnorderedStreamElementQueue.java:159)at org.apache.flink.streaming.api.operators.async.AsyncWaitOperator.outputCompletedElement(AsyncWaitOperator.java:298)at org.apache.flink.streaming.api.operators.async.AsyncWaitOperator.access$100(AsyncWaitOperator.java:78)at org.apache.flink.streaming.api.operators.async.AsyncWaitOperator$ResultHandler.processResults(AsyncWaitOperator.java:371)at org.apache.flink.streaming.api.operators.async.AsyncWaitOperator$ResultHandler.lambda$processInMailbox$0(AsyncWaitOperator.java:352)at org.apache.flink.streaming.runtime.tasks.StreamTaskActionExecutor$1.runThrowing(StreamTaskActionExecutor.java:50)at org.apache.flink.streaming.runtime.tasks.mailbox.Mail.run(Mail.java:90)at org.apache.flink.streaming.runtime.tasks.mailbox.MailboxProcessor.processMail(MailboxProcessor.java:317)at org.apache.flink.streaming.runtime.tasks.mailbox.MailboxProcessor.runMailboxLoop(MailboxProcessor.java:189)at org.apache.flink.streaming.runtime.tasks.StreamTask.runMailboxLoop(StreamTask.java:609)at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:573)at org.apache.flink.runtime.taskmanager.Task.doRun(Task.java:755)at org.apache.flink.runtime.taskmanager.Task.run(Task.java:570)at java.lang.Thread.run(Thread.java:750)
解决方法
我们避免数据直接从第一个 map 过程后直接流向第二个 AsynMap,中间添加一个处理过程,尽管这个处理过程我们啥也不干。
SingleOutputStreamOperator<xxxxx> task = source.rebalance().map(new XXXXMapFunction()).uid("xxxxxx").name("xxxx");// 这里添加一个处理过程,task -> process ,然后process到下一个 mapSingleOutputStreamOperator<KontrastAlgoTaskStated> process = task.process(new DefaultProcessFunction<>());DataStream<yyyyy> dataStreamHyKontrast = AsyncDataStream.unorderedWait(process, new YYYYRequestMapFunction(), defaultTimeoutMills, TimeUnit.SECONDS).name("yyyyyy").uid("yyyyyy");
其中的 DefaultProcessFunction 是我自己编写的,就是什么也不做。
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;/*** 默认的 collect,用于处理 map 后不做任何处理直接到下一个结点* @author smileyan* @param <IN> 对应的实体类*/
public final class DefaultProcessFunction<IN> extends ProcessFunction<IN, IN> {@Overridepublic void processElement(IN value, ProcessFunction<IN, IN>.Context ctx, Collector<IN> out) throws Exception {out.collect(value);}
}
总结
遇到问题后查了一下,都没有找到我这种情况的博客。后来折腾了一会儿发现如上方法可以解决问题,特此记录,希望可能帮到遇到相同问题的小伙伴 ~ 感谢阅览 ~
Smileyan
2023.07.18 10:12
相关文章:
flink 报错:Caused by: java.lang.RuntimeException: Assigned key must not be null!
问题描述 不同情况下需要找对应的解决方法,这里介绍的解决方法不能拓展到别的场景。 场景描述: flink job 的开发过程中遇到这样的需求,需要先 map 处理,然后把返回的 DataStream 作为输入,流入别的 map 中。这里我们遇…...
AN OVERVIEW OF LANGUAGE MODELS RECENT DEVELOPMENTS AND OUTLOOK
LLM系列相关文章,针对《AN OVERVIEW OF LANGUAGE MODELS: RECENT DEVELOPMENTS AND OUTLOOK》的翻译。 语言模型综述:近年来的发展与展望 摘要1 引言2 语言模型的类型2.1 结构化LM2.2 双向LM2.3 置换LM 3 语言单元3.1 字符3.2 单词和子单词3.2.1 基于统…...
ArcGIS、ENVI、InVEST、FRAGSTATS等多技术融合提升
专题一 空间数据获取与制图 1.1 软件安装与应用讲解 1.2 空间数据介绍 1.3海量空间数据下载 1.4 ArcGIS软件快速入门 1.5 Geodatabase地理数据库 专题二 ArcGIS专题地图制作 2.1专题地图制作规范 2.2 空间数据的准备与处理 2.3 空间数据可视化:地图符号与注…...
fastapi初使用,构建自己的api
文章目录 1、安装2、api实现2.1、 app.get("/1")2.2、app.get("/{a}")2.3、app.get("/{a}{b}")2.4、函数和api分离 3、运行 原文链接:https://wangguo.site/posts/d98bb3c9.html fastapi 是一个基于 Python 的 API 构建框架ÿ…...
Html基础知识学习——圣杯布局、margin负值、等高布局(十七)
文章目录 圣杯布局margin负值等高布局 圣杯布局 两边页面固定中间页面宽度随着浏览器大小自适应 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-widt…...
从一长串字符串中找出图片,查看是否符合md5要求
/**检查内容中的图片否含有外部链接*/ function checkExternalLinks(content){var pattern /<img[^>]src["]([^"])["][^>]*>/g;var match;var index 0;while ((match pattern.exec(content)) ! null) {var imageUrl match[1];var regex /\/sto…...
新手小白如何学好UI设计?一般学多久? 优漫动游
学习UI设计首先就是软件:PS、AI、CDR等但是掌握了软件不等于就掌握了UI设计,设计的思维也是很重要的网上很多关于UI设计的教程视频,可以多去看看 广州平面设计培训 要多久这个看个人的学习能力吧,有些人天资聪慧,很快…...
实现 Rollup 插件alias 并使用vitest提高开发效率
本篇文章是对 实现 Rollup 插件 alias | 使用 TypeScript 实现库的基本流程 | 使用单元测试提高开发效率 的总结。其中涉及到开发一个组件库的诸多知识点。 实现一个经常用的 rollup 插件 alias 首先执行npm init命令初始化一个package.json文件,因为插件使用了ty…...
【DSL】ES+DSL 查询语法
【DSL】ESDSL 查询语法 一、前言二、定义1.基本介绍2.语法说明(1)关键字(Keywords)(2)标识符(Identifiers)(3)表达式(Expressions)(4)运算符(Operators)(5)函…...
Vue第三篇:最简单的vue购物车示例
本文参考:Vue Cli(脚手架)实现购物车小案例 - - php中文网博客 效果图: 编写流程: 1、首先通过vue/cli创建工程 vue create totalprice 2、改写App.vue代码如下: <template><div><div v…...
MFC 基于数据库的管理系统
文章目录 初始化设置菜单 添加数据库类创建数据库配置数据库 全部代码 初始化 创建文件选择基于CListView 初始化数据 public:CListCtrl& m_list;CSQLView::CSQLView() noexcept:m_list(GetListCtrl()) {// TODO: 在此处添加构造代码}void CSQLView::OnInitialUpdate() {C…...
EfficientNet论文笔记
EfficientNet论文笔记 通过NAS平衡了channel,depth,resolution,发现在相同的FLOPs下,同时增加 depth和 resolution的效果最好。 数据集效果小于resolution怎么办? EfficientNet—b0框架 表格中每个MBConv后会跟一个…...
系统学习Linux-SSH远程服务(二)
概念 安全外壳协议,提供安全可靠的远程连接 特点 ssh是工作在传输层和应用层的协议 ssh提供了一组管理命令 ssh 远程登陆 scp 远程拷贝 sftp 远程上传下载 ssh-copy-id ssh keygen 生成 提供了多种身份验证机制 身份验证机制 密码验证 需要提供密码 密…...
PyTorch训练RNN, GRU, LSTM:手写数字识别
文章目录 pytorch 神经网络训练demoResult参考来源 pytorch 神经网络训练demo 数据集:MNIST 该数据集的内容是手写数字识别,其分为两部分,分别含有60000张训练图片和10000张测试图片 图片来源:https://tensornews.cn/mnist_intr…...
基于深度学习的高精度道路瑕疵检测系统(PyTorch+Pyside6+YOLOv5模型)
摘要:基于深度学习的高精度道路瑕疵(裂纹(Crack)、检查井(Manhole)、网(Net)、裂纹块(Patch-Crack)、网块(Patch-Net)、坑洼块&#x…...
【裸辞转行】是告别,也是新的开始
一年多了没有更新,是因为去年身体加心理因素辞职了,并且大概率不会再做程序员了,嗯。本来觉得可能再也不会打开 CSDN 了,想了想,还是来做个告别吧,任何事情都该有始有终才对。 回忆碎碎念 是在去年的 11 …...
了解交换机接口的链路类型(access、trunk、hybrid)
上一个章节中讲到了vlan的作用及使用,这篇了解一下交换机接口的链路类型和什么情况下使用 vlan在数据包中是如何体现的,在上一篇的时候提到测试了一下,从PC1去访问PC4的时候,只从E0/0/2发送给了E0/0/3这是,因为两个接…...
Android系统启动流程分析
当按下Android系统的开机电源按键时候,硬件会触发引导芯片,执行预定义的代码,然后加载引导程序(BootLoader)到RAM,Bootloader是Android系统起来前第一个程序,主要用来拉起Android系统程序,Android系统被拉起…...
如何在Ubuntu上安装OpenneBula
OpenNebula是一个开源云计算平台,允许我们在完全虚拟化云中组合和管理VMware和KVM虚拟机 第1步:安装MariaDB数据库服务器 OpenNebula还需要一个数据库服务器来存储其内容。 安装MariaDB: 1 2 sudo apt update sudo apt install mariadb-s…...
解决MySQL中分页查询时多页有重复数据,实际只有一条数据的问题
0 前言 有一个离奇的BUG,在查询时,第一页跟第二页有一个共同的数据。有的数据却不显示。 后来发现是在SQL排序时没用主键排序。 解决:使用主键排序 以下是我准备的举例,可以自己试试。 1 数据准备 SET NAMES utf8mb4; SET FORE…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
libfmt: 现代C++的格式化工具库介绍与酷炫功能
libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库,提供了高效、安全的文本格式化功能,是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全:…...
算法打卡第18天
从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...
QT开发技术【ffmpeg + QAudioOutput】音乐播放器
一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下,音视频内容犹如璀璨繁星,点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频,到在线课堂中知识渊博的专家授课,再到影视平台上扣人心弦的高清大片,音…...
【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架
文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...
Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目
应用场景: 1、常规某个机器被钓鱼后门攻击后,我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后,我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...
用 FFmpeg 实现 RTMP 推流直播
RTMP(Real-Time Messaging Protocol) 是直播行业中常用的传输协议。 一般来说,直播服务商会给你: ✅ 一个 RTMP 推流地址(你推视频上去) ✅ 一个 HLS 或 FLV 拉流地址(观众观看用)…...
