当前位置: 首页 > news >正文

LangChain(5)Conversational Agents

Large Language Models (LLMs) 在语义知识方面表现不错,但也有一些不足,如:不能正确计算数学公式、无法获取最新知识新闻

通过 Agents 可以赋予 LLMs 更多能力,让LLM能够计算、上网查询

agent 简单使用

from langchain import OpenAI
# 语言模型
llm = OpenAI(
openai_api_key="OPENAI_API_KEY",
temperature=0,
model_name="text-davinci-003"
)from langchain.chains import LLMMathChain
from langchain.agents import Tool
# 能计算数学公式的一个chain
llm_math = LLMMathChain(llm=llm)# initialize the math tool
math_tool = Tool(
name='Calculator',
func=llm_math.run,
description='Useful for when you need to answer questions about math.' # 描述工具能做什么
)
# when giving tools to LLM, we must pass as list of tools
tools = [math_tool]# 如果 langchain.agents 中有相关工具,则可以直接使用
#from langchain.agents import load_tools
#tools = load_tools(
#['llm-math'],
#llm=llm
)# 初始化 agent
from langchain.agents import initialize_agent
zero_shot_agent = initialize_agent(agent="zero-shot-react-description", # 无记忆的agenttools=tools, # tools 中只有math_tool,所以只能做计算llm=llm,verbose=True, # 显示执行过程max_iterations=3)
zero_shot_agent("what is (4.5*2.1)^2.2?")

上面的 tools 中只有math_tool,所以 zero_shot_agent 只能做计算,不能回答其它常识问题,可以在 tools 中添加更多工具,使得 zero_shot_agent 拥有更多能力。

# 可以在 tools 中新增聊天工具
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
prompt = PromptTemplate(
input_variables=["query"],
template="{query}"
)
llm_chain = LLMChain(llm=llm, prompt=prompt)# initialize the LLM tool
llm_tool = Tool(
name='Language Model',
func=llm_chain.run,
description='use this tool for general purpose queries and logic'
)
tools.append(llm_tool)
# reinitialize the agent
zero_shot_agent = initialize_agent(
agent="zero-shot-react-description",
tools=tools,
llm=llm,
verbose=True,
max_iterations=3
)

agent 类型

zero-shot-react-description 无缓存的方式,聊天是单次的,无上下文缓存

zero_shot_agent = initialize_agent(
agent="zero-shot-react-description",
tools=tools,
llm=llm,
verbose=True,
max_iterations=3,
)

conversational-react-description 带缓存

from langchain.memory import ConversationBufferMemorymemory = ConversationBufferMemory(memory_key="chat_history")conversational_agent = initialize_agent(
agent='conversational-react-description',
tools=tools,
llm=llm,
verbose=True,
max_iterations=3,
memory=memory,
)

react-docstore 可以检索知识库,无缓存

from langchain import Wikipedia
from langchain.agents.react.base import DocstoreExplorerdocstore=DocstoreExplorer(Wikipedia())
tools = [Tool(name="Search", # 信息检索func=docstore.search, description='search wikipedia'),Tool(name="Lookup", # 匹配相近结果func=docstore.lookup, description='lookup a term in wikipedia')
]docstore_agent = initialize_agent(tools,llm,agent="react-docstore",verbose=True,max_iterations=3)

self-ask-with-search 将LLM与搜索引擎结合起来

from langchain import SerpAPIWrapper# initialize the search chain
search = SerpAPIWrapper(serpapi_api_key='serp_api_key')# create a search tool
tools = [Tool(name="Intermediate Answer",func=search.run,description='google search')]# initialize the search enabled agent
self_ask_with_search = initialize_agent(tools,llm,agent="self-ask-with-search",verbose=True)

参考:
Superpower LLMs with Conversational Agents

相关文章:

LangChain(5)Conversational Agents

Large Language Models (LLMs) 在语义知识方面表现不错,但也有一些不足,如:不能正确计算数学公式、无法获取最新知识新闻 通过 Agents 可以赋予 LLMs 更多能力,让LLM能够计算、上网查询 agent 简单使用 from langchain import …...

【云原生】Kubernetes临时容器

临时容器 特性状态: Kubernetes v1.25 [stable] 本页面概述了临时容器:一种特殊的容器,该容器在现有 Pod 中临时运行,以便完成用户发起的操作,例如故障排查。 你会使用临时容器来检查服务,而不是用它来构建…...

Jenkins+Robot 接口自动化测试

目录 前言: 设计目标 项目说明 目录结构 配置 jenkins 1.安装插件 2.配置项目 前言: JenkinsRobot是一种常见的接口自动化测试方案,可以实现自动化的接口测试和持续集成。Jenkins是一个流行的持续集成工具,而Robot Framew…...

【Visual Studio Code】---自定义键盘快捷键设置

概述 一个好的文章能够帮助开发者完成更便捷、更快速的开发。书山有路勤为径,学海无涯苦作舟。我是秋知叶i、期望每一个阅读了我的文章的开发者都能够有所成长。 一、进入键盘快捷键设置 1、进入键盘快捷键设置方法1 使用快捷键进入键盘快捷键设置先按 Ctrl K再…...

FastEdit ⚡:在10秒内编辑大型语言模型

概述: 这个仓库旨在通过一个单一的命令,有效地将新鲜且定制化的知识注入到大型语言模型中,以辅助开发人员的工作。 支持的模型:○ GPT-J (6B)○ LLaMA (7B/13B)○ BLOOM (7.1B)○ Falcon (7B)○ Baichuan (7B/13B)○ InternLM (7…...

SpringBoot + Docker 实现一次构建到处运行

一、容器化部署的好处 Docker 作为一种新兴的虚拟化方式,它可以更高效的利用系统资源,不需要进行硬件虚拟以及运行完整操作系统等额外开销。 传统的虚拟机技术启动应用服务往往需要数分钟,而 Docker 容器应用,由于直接运行宿主内…...

Spring-Cloud-Gateway如何自定义断言工厂?

遇到这么一个面试题:如何在网关做配置,实现只有在早晨9点到下午18点之间接口才允许访问,其他时间访问都是404。 我们知道网关的一个重要的作用就是路由转发,路由表的配置大概是这个样子: spring:cloud:gateway:routes:- id: user…...

Android平台如何高效率实现GB28181对接?

技术背景 GB28181协议是一种用于设备状态信息报送的协议,可以在不同设备之间进行通信和数据传输。 在安卓系统上实现GB/T 28181非常必要,GB28181协议实现分两部分,一部分是信令,另外一部分就是媒体数据的编码。 信令主要包括S…...

vue2 实现后台管理系统左侧菜单联动实现 tab根据路由切换联动内容,并支持移动端框架

效果图: pc端 移动端 由于代码比较多,我这里就不一一介绍了,可以去我的git上把项目拉下来 git地址https://gitee.com/Flechazo7/htglck.git 后台我是用node写的有需要的可以评论联系...

一本通1910:【00NOIP普及组】计算器的改良题解

今天是编程集训的第二天,也是我来到CSDN整整1年。感谢所有阅读过我的文章的人,谢谢。 今天的比赛难度略低于昨天,但这道题也卡了我好久。 进入正题 题目: 题目描述: NCL是一家专门从事计算器改良与升级的实验室&a…...

golang网络编程学习-1rpc

网络编程主要的内容是: 1.TCP网络编程 2.http服务 3.rpc服务 4.websocket服务 一、rpc RPC 框架----- 远程过程调用协议RPC(Remote Procedure Call Protocol)-----允许像调用本地服务一样调用远程服务。 RPC是指远程过程调用,也就是说两台服…...

【MQTT】Esp32数据上传采集:最新mqtt插件(支持掉线、真机调试错误等问题)

前言 这是我在Dcloud发布的插件-最完整Mqtt示例代码(解决掉线、真机调试错误等问题),经过整改优化和替换Mqtt的js文件使一些市场上出现的问题得以解决,至于跨端出问题,可能原因有很多,例如,合法…...

基于PyQt5的UI界面开发——对基本控件的介绍

基本控件介绍 在PyQt中,控件是用户界面上的可见元素。控件可以包括按钮、标签、文本框、进度条等。每个控件都有自己的属性和方法,可以通过编程方式进行调整和操作。 以下是一些常用的PyQt控件: QLabel(标签)&#…...

flink 报错:Caused by: java.lang.RuntimeException: Assigned key must not be null!

问题描述 不同情况下需要找对应的解决方法,这里介绍的解决方法不能拓展到别的场景。 场景描述: flink job 的开发过程中遇到这样的需求,需要先 map 处理,然后把返回的 DataStream 作为输入,流入别的 map 中。这里我们遇…...

AN OVERVIEW OF LANGUAGE MODELS RECENT DEVELOPMENTS AND OUTLOOK

LLM系列相关文章,针对《AN OVERVIEW OF LANGUAGE MODELS: RECENT DEVELOPMENTS AND OUTLOOK》的翻译。 语言模型综述:近年来的发展与展望 摘要1 引言2 语言模型的类型2.1 结构化LM2.2 双向LM2.3 置换LM 3 语言单元3.1 字符3.2 单词和子单词3.2.1 基于统…...

ArcGIS、ENVI、InVEST、FRAGSTATS等多技术融合提升

专题一 空间数据获取与制图 1.1 软件安装与应用讲解 1.2 空间数据介绍 1.3海量空间数据下载 1.4 ArcGIS软件快速入门 1.5 Geodatabase地理数据库 专题二 ArcGIS专题地图制作 2.1专题地图制作规范 2.2 空间数据的准备与处理 2.3 空间数据可视化:地图符号与注…...

fastapi初使用,构建自己的api

文章目录 1、安装2、api实现2.1、 app.get("/1")2.2、app.get("/{a}")2.3、app.get("/{a}{b}")2.4、函数和api分离 3、运行 原文链接:https://wangguo.site/posts/d98bb3c9.html fastapi 是一个基于 Python 的 API 构建框架&#xff…...

Html基础知识学习——圣杯布局、margin负值、等高布局(十七)

文章目录 圣杯布局margin负值等高布局 圣杯布局 两边页面固定中间页面宽度随着浏览器大小自适应 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-widt…...

从一长串字符串中找出图片,查看是否符合md5要求

/**检查内容中的图片否含有外部链接*/ function checkExternalLinks(content){var pattern /<img[^>]src["]([^"])["][^>]*>/g;var match;var index 0;while ((match pattern.exec(content)) ! null) {var imageUrl match[1];var regex /\/sto…...

新手小白如何学好UI设计?一般学多久? 优漫动游

学习UI设计首先就是软件&#xff1a;PS、AI、CDR等但是掌握了软件不等于就掌握了UI设计&#xff0c;设计的思维也是很重要的网上很多关于UI设计的教程视频&#xff0c;可以多去看看 广州平面设计培训 要多久这个看个人的学习能力吧&#xff0c;有些人天资聪慧&#xff0c;很快…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...