【Hammerstein模型的级联】快速估计构成一连串哈默斯坦模型的结构元素研究(Matlab代码实现)
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
在许多振动应用中,所研究的系统略微非线性。Hammerstein模型的级联可以方便地描述这样的系统。Hammerstein提供了一种基于指数正弦扫描相位属性的简单方法。
构成一连串Hammerstein模型的结构元素可以在快速估计中起到关键的作用。Hammerstein模型由级联的非线性静态函数和线性动态函数组成。以下是研究Hammerstein模型结构元素的步骤:
1. 数据收集:首先,收集用于建立Hammerstein模型的数据。这些数据应包括系统的输入和输出信号,以便进行模型参数估计和验证。
2. 静态非线性函数选择:选择适当的静态非线性函数作为Hammerstein模型的非线性部分。常见的选择包括多项式函数、幂函数、指数函数、Sigmoid函数等。根据系统的特性和预期的非线性行为,选择最能表示系统的非线性特点的函数。
3. 参数估计:对选择的静态非线性函数进行参数估计。参数估计的方法可以根据函数的性质灵活选择,例如最小二乘法、最大似然估计法等。根据所选方法,使用数据集中的输入和输出信号优化非线性函数的参数。
4. 线性动态函数选择:选择适当的线性动态函数作为Hammerstein模型的动态部分。常见的选择包括传递函数、状态空间模型等。根据系统的动态特性,选择最适合描述系统响应的线性动态函数。
5. 参数估计:对选择的线性动态函数进行参数估计。使用数据集中的输入和输出信号,在模型的非线性部分和线性动态部分之间优化参数。
6. 模型验证:使用建立的Hammerstein模型对独立数据集进行验证。计算预测输出与真实输出之间的误差,评估模型的准确性和可靠性。如果有必要,可以对模型进行进一步调整和改进。
7. 性能分析:对Hammerstein模型的性能进行分析。例如,可以通过计算模型的拟合优度(如均方根误差)来评估模型的准确性。此外,还可以进行稳定性分析、系统辨识度评估等进一步分析。
需要注意的是,构建Hammerstein模型需要对非线性和线性组成部分的选择和参数估计进行适当的判断和调整。根据具体问题的复杂性和数据的可用性,可以采用各种方法和技术来加快估计和验证过程。
📚2 运行结果

部分代码:
function hhat = Hammerstein_ID(input_sig,output,duration,f1,f2,fs,N,opt_meth,opt_filt)
%---------------------------------------------------------
%
% hhat = Hammerstein_ID(input_sig,output,f1,f2,fs,N,opt_meth,opt_filt)
%
% Estimates the Kernels "h" of the cascade of Hammerstein model of order N fed with
% the input signal "input" and where the corresponding output signal "output"
% has been recorded. "input" has to be an exponential sine sweep going from
% f1 to f2.
%
% Input parameters:
% input_sig : input exponential sine sweep
% output : output of the system fed with the input signal
% f1 : starting frequency of the sweep
% f2 : end frequency of the sweep
% fs : sampling frequency
% N : Order of the model to be identified
% opt_meth : Method to use for the estimation (string expected)
% - 'Reb': Method proposed by R閎illat et al. in [1]
% - 'Nov': Method proposed by Novak et al in [2]
% opt_filt : Specifies the method to use to compute the inverse filter
% (string expected). By default 'TFB_linear' is chosen.
% - 'TFB_square': FTT based filter with a square window and
% regularization (see [1])
% - 'TFB_linear': FTT based filter with a square window with continuous
% linear borders and regularization (see [1])
% - 'TFB_gevrey': FTT based filter with a square window with infinitely
% continuous gevrey borders and regularization (see [1])
% - 'Nov' : Filter based on the analytical formulation using aymptotic
% signals (see [2]).
%
% Output:
% h : 2D matrix containing the pseudo impulse responses (temporal domain)
% of the estimated kernels.
display('--> Hammerstein Identification in progress ...')
% Check arguments
if nargin<6
display(' => ERROR : Incorrect number of arguments')
return
elseif nargin<7
display(' => No method option and filtering option specified. ')
display(' => Method option = ''Reb'' chosen by default.')
display(' => Filtering option = ''TFB_linear'' chosen by default.')
opt_meth = 'Reb' ;
opt_filt = 'TFB_linear';
elseif nargin<8
display([' => Method ' opt_meth ' chosen'])
display(' => No filtering option specified. ')
if strcmp(opt_meth,'Reb')
opt_filt = 'TFB_linear';
display(' => Filtering option = ''TFB_linear'' chosen by default.')
elseif strcmp(opt_meth,'Nov')
opt_filt = 'Nov';
display(' => Filtering option = ''Nov'' chosen by default.')
else
display(' => ERROR : Unknown method option')
display(' => Select ''Reb'' or ''Nov''')
return
end
else
if ( strcmp(opt_meth,'Nov') || strcmp(opt_meth,'Reb'))
display([' => Method ' opt_meth ' chosen'])
else
display(' => ERROR : Unknown method option')
display(' => Select ''Reb'' or ''Nov''')
return
end
if ( strcmp(opt_filt,'TFB_square') || strcmp(opt_filt,'TFB_linear') || strcmp(opt_filt,'TFB_gevrey') || strcmp(opt_filt,'Nov'))
display([' => Filtering ' opt_filt ' chosen'])
else
display(' => ERROR : Unknown filtering option')
display(' => Select ''TFB_square'', ''TFB_linear'', ''TFB_gevrey'' or ''Nov''')
return
end
end
% Equivalent pulsations
w1 = f1/fs*2*pi;
w2 = f2/fs*2*pi;
% Convolution of the response with the inverse of the sweep
if strcmp(opt_meth,'Reb')
inverse_input_sig = compute_inverse_filter(input_sig,f1,f2,fs,opt_filt) ;
gToCut = convq(output,inverse_input_sig);
elseif strcmp(opt_meth,'Nov')
% Nonlinear convolution in the spectral domain
gToCut = nonlinear_convolution(output,duration,f1,f2,fs);
gToCut = [gToCut; gToCut];
end
% Computation of the delay of the pseudo RI
if strcmp(opt_meth,'Reb')
T = length(input_sig); % Actual length of the sweep (in samples)
deltaT = T*log(1:N)/log(w2/w1);
elseif strcmp(opt_meth,'Nov')
T = length(output); % Actual length of the output (in samples)
L = 1/f1*round( (duration*f1)/(log(f2/f1)) );
deltaT = L*log(1:N)*fs;
end
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1] M. Rébillat, R. Hennequin, E. Corteel, B.F.G. Katz, "Identification of cascade of Hammerstein models for the description of non-linearities in vibrating devices", Journal of Sound and Vibration, Volume 330, Issue
5, Pages 1018-1038, February 2011.
[2] A. Novak, L. Simon, F. Kadlec, P. Lotton, "Nonlinear system identification using exponential swept-sine signal", IEEE Transactions on Instrumentation and Measurement, Volume 59, Issue 8, Pages 2220-2229, August 2010.
🌈4 Matlab代码实现
相关文章:
【Hammerstein模型的级联】快速估计构成一连串哈默斯坦模型的结构元素研究(Matlab代码实现)
目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 💥1 概述 在许多振动应用中,所研究的系统略微非线性。Hammerstein模型的级联可以方便地描述这样的系统。Hammerstein提供了一种基于指数正弦…...
「C 语言」extern关键字
在 C 语言中,关键字 extern 是用来告诉编译器,这个变量 OR 函数在其他文件中已有定义,可在当前文件中使用 当我们定义了一个全局变量 OR 函数时,它就已经具有了外部链接的属性,我们只需要通过在引用该变量的文件中用 …...
oracle单个用户最大连接数限制
项目经理反馈,现场已做了单个用户的最大连接数2000的限制,但数据库还是报无法连接,故障用户的连接数已3800多了。 查看日志报错如下 2023-07-20T13:07:57.79465308:00 Process m000 submission failed with error 20 Process m000 submiss…...
计算机网络最基础知识介绍
OSI和TCP/IP是很基础但又非常重要的知识,很多知识点都是以它们为基础去串联的,作为底层,掌握得越透彻,理解上层时会越顺畅。今天这篇网络基础科普,就是根据OSI层级去逐一展开的。 01 计算机网络基础 01 计算机网络的分类 按照网络的作用范围:广域网(WAN)、城域网(MA…...
接口测试进阶之数据模板
大家好久不见了。今天的文章将介绍jinja2模板在接口测试数据上的应用。 这几个月我在想,进阶系列要怎么写。 毕竟很多情况下,我觉得写技术文章和做培训一样,都会有两个结果: 1.是需要这些知识的人看不懂。 2.是看得懂的人不需要…...
Java中使用MySQL详解
1. 简介 在Java开发中,与数据库的交互是常见且重要的一部分。MySQL是一个广泛使用的关系型数据库管理系统,而Java作为一种强大的编程语言,提供了丰富的API和工具,使得与MySQL数据库的结合应用更加便捷和高效。 本篇博客将详细介…...
Docker安装Elasticsearch相关软件安装
Docker安装Elasticsearch相关软件安装 本文将介绍通过 Docker 的方式安装 Elasticsearch 相关的软件。 1、Docker安装Elasticsearch 1.1 搜索镜像 $ docker search elasticsearch $ docker search elasticsearch:7.12.11.2 拉取镜像 $ docker pull elasticsearch:7.12.11.…...
Ubuntu的安装与部分配置
该教程使用的虚拟机是virtuabox,镜像源的版本是ubuntu20.04.5桌面版 可通过下面的链接在Ubuntu官网下载:Alternative downloads | Ubuntu 也可直接通过下面的链接进入百度网盘下载【有Ubuntu20.04.5与hadoop3.3.2以及jdk1.8.0_162,该篇需要使…...
为什么 Splashtop 是更好用的 iOS 远程桌面应用
全球远程桌面软件市场最近达到19.2亿美元,表明使用任意设备实现随处远程控制越来越受欢迎。 近年来,企业的运营方式发生了重大改变,远程桌面软件已成为广泛使用的解决方案。Splashtop 是目前最好用的远程桌面工具之一,安全可靠且…...
[SQL挖掘机] - 字符串函数 - lower
介绍: lower函数是mysql中的一个字符串函数,其作用是将给定的字符串转换为小写形式。它接受一个字符串作为参数,并返回一个新的字符串,其中所有的字母字符均被转换为小写形式。 使用lower函数可以帮助我们在字符串处理中实现标准化和规范化…...
什么是Koala?
Koala 介绍 koala 是一个前端预处理器语言图形编译工具,支持 Less、Sass、Compass、CoffeeScript,帮助 web 开发者更高效地使用它们进行开发。跨平台运行,完美兼容 windows、linux、mac。 关键特性 多语言支持 支持 Less、Sass、CoffeeSc…...
阿里巴巴前端开发规范
前言 规范的目的是为了编写高质量的代码,让你的团队成员每天的心情都是愉悦的,大家在一起是快乐的。 现在软件架构的复杂性需要协同开发完成,如何高效地协同呢?无规矩不成方圆,无规范难以协同,比如…...
opencv-19 图像色彩空间转换函数cv2.cvtColor()
cv2.cvtColor() 函数是 OpenCV 中用于图像颜色空间转换的函数。它允许你将图像从一个色彩空间转换为另一个色彩空间。在 Python 中,你可以使用这个函数来实现不同色彩空间之间的转换。 函数的基本语法为: cv2.cvtColor(src, code[, dst[, dstCn]])参数…...
SpringCloudAlibaba微服务实战系列(二)Nacos配置中心
SpringCloudAlibaba Nacos配置中心 在java代码中或者在配置文件中写配置,是最不雅的,意味着每次修改配置都需要重新打包或者替换class文件。若放在远程的配置文件中,每次修改了配置后只需要重启一次服务即可。话不多说,直接干货拉…...
【Kafka源码走读】Admin接口的客户端与服务端的连接流程
注:本文对应的kafka的源码的版本是trunk分支。写这篇文章的主要目的是当作自己阅读源码之后的笔记,写的有点凌乱,还望大佬们海涵,多谢! 最近在写一个Web版的kafka客户端工具,然后查看Kafka官网,…...
Windows API遍历桌面上所有文件
要获取桌面上的图标,可以使用Windows API中的Shell API。以下是遍历桌面上所有文件的示例代码: #include <Windows.h> #include <ShlObj.h> #include <iostream> #include <vector> using namespace std;int main() {// 获取桌…...
【MySQL】基本查询(插入查询结果、聚合函数、分组查询)
目录 一、插入查询结果二、聚合函数三、分组查询(group by & having)四、SQL查询的执行顺序五、OJ练习 一、插入查询结果 语法: INSERT INTO table_name [(column [, column ...])] SELECT ...案例:删除表中重复数据 --创建…...
【Go语言】Golang保姆级入门教程 Go初学者介绍chapter1
Golang 开山篇 Golang的学习方向 区块链研发工程师: 去中心化 虚拟货币 金融 Go服务器端、游戏软件工程师 : C C 处理日志 数据打包 文件系统 数据处理 很厉害 处理大并发 Golang分布式、云计算软件工程师:盛大云 cdn 京东 消息推送 分布式文…...
mysql 自增长键值增量设置
参考文章 MySQL中auto_increment的初值和增量值设置_auto_increment怎么设置_linda公馆的博客-CSDN博客 其中关键语句 show VARIABLES like %auto_increment% set auto_increment_increment4; set auto_increment_offset2;...
【pytho】request五种种请求处理为空和非空处理以及上传excel,上传图片处理
一、python中请求处理 request.args获取的是个字典,所以可以通过get方式获取请求参数和值 request.form获取的也是个字典,所以也可以通过get方式获取请求的form参数和值 request.data,使用过JavaScript,api调用方式进行掺入jso…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
高分辨率图像合成归一化流扩展
大家读完觉得有帮助记得关注和点赞!!! 1 摘要 我们提出了STARFlow,一种基于归一化流的可扩展生成模型,它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流(TARFlow&am…...
深入理解 React 样式方案
React 的样式方案较多,在应用开发初期,开发者需要根据项目业务具体情况选择对应样式方案。React 样式方案主要有: 1. 内联样式 2. module css 3. css in js 4. tailwind css 这些方案中,均有各自的优势和缺点。 1. 方案优劣势 1. 内联样式: 简单直观,适合动态样式和…...
Android屏幕刷新率与FPS(Frames Per Second) 120hz
Android屏幕刷新率与FPS(Frames Per Second) 120hz 屏幕刷新率是屏幕每秒钟刷新显示内容的次数,单位是赫兹(Hz)。 60Hz 屏幕:每秒刷新 60 次,每次刷新间隔约 16.67ms 90Hz 屏幕:每秒刷新 90 次,…...
用鸿蒙HarmonyOS5实现国际象棋小游戏的过程
下面是一个基于鸿蒙OS (HarmonyOS) 的国际象棋小游戏的完整实现代码,使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├── …...

