当前位置: 首页 > news >正文

【LeetCode】55.跳跃游戏

题目

给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标。

示例 1:

输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。

示例 2:

输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。

提示:

  • 1 <= nums.length <= 3 * 10^4
  • 0 <= nums[i] <= 10^5

解答

源代码

class Solution {public boolean canJump(int[] nums) {// k表示最远能够走到哪个下标int k = 0;// i代表现在走到哪个下标for (int i = 0; i < nums.length; i++) {if (i > k) {return false;}k = Math.max(k, i + nums[i]);}return true;}
}

总结

这个题不用想得太复杂,就直接把遍历数组想象成走路,计算出当前可到达的最远下标,在向前走时不断对比更新可到达的最远下标,若当前走到的下标已经大于可到达的最远下标,那就表示这个数组没办法到达最后一个下标。

相关文章:

【LeetCode】55.跳跃游戏

题目 给定一个非负整数数组 nums &#xff0c;你最初位于数组的 第一个下标 。 数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标。 示例 1&#xff1a; 输入&#xff1a;nums [2,3,1,1,4] 输出&#xff1a;true 解释&#xff1a;可以…...

Docker学习路线12:开发者体验

到目前为止&#xff0c;我们只讨论了使用Docker来部署应用程序。然而&#xff0c;Docker也是一个极好的用于开发应用程序的工具。可以采用一些不同的建议来改善开发体验。 在应用程序中使用docker-compose以方便开发。使用绑定挂载将本地代码挂载到容器文件系统中&#xff0c;…...

后端服务迁移方案及过程记录

阶段时序动作双写数据对比1新rdb集群上线双写数据对比2新服务上线&#xff0c;无流量双写数据对比2后端自己发起的流程比如job&#xff0c;新服务上线一份新的&#xff0c;独立运行双写数据对比2消费二方mq&#xff0c;新服务使用新的消费组消费原有消息双写数据对比3新旧服务比…...

StAX解析

StAX解析 StAX解析介绍 StAX解析与SAX解析类似&#xff0c;也是基于事件驱动的&#xff0c;不同之处在于StAX采用的是拉模式&#xff0c;应用程序通过调用解析器推进解析的进程&#xff0c;可以调用next()方法来获取下一个解析事件(开始文档&#xff0c;结束文档&#xff0c;开…...

[MCU]AUTOSAR COM STACK - CAN协议栈

各层PDU PDU&#xff1a;Protocal Data Unit&#xff0c;协议数据单元&#xff0c;由SDU和PCI组成&#xff1b; I-PDU&#xff1a;Interaction Layer PDU&#xff0c;数据交互层PDU&#xff1b;N-PDU&#xff1a;NetWork Layer PDU&#xff0c;网络层PDU&#xff0c;通常用的…...

React:从 npx开始

使用 npm 来创建第一个 recat 文件&#xff08; react-demo 是文件名&#xff0c;可以自定义&#xff09; npx create-react-app react-demo npx是 npm v5.2 版本新添加的命令&#xff0c;用来简化 npm 中工具包的使用 原始&#xff1a; 全局安装npm i -g create-react-app 2 …...

力扣热门100题之接雨水【困难】

题目描述 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 示例 1&#xff1a; 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2,1] 输出&#xff1a;6 解释&#xff1a;上面是由数组 [0,1,0,2,1,0,1,3…...

Stable-Diffusion-Webui部署SDXL0.9报错参数shape不匹配解决

问题 已经在model/stable-diffusion文件夹下放进去了sdxl0.9的safetensor文件&#xff0c;但是在切换model的时候&#xff0c;会报错model的shape不一致。 解决方法 git pullupdate一些web-ui项目就可以&#xff0c;因为当前项目太老了&#xff0c;没有使用最新的版本。...

Springboot @Async 多线程获取返回值

Springboot Async 多线程获取返回值 需求背景 最近需要用到多线程, 自己维护线程池很麻烦, 正好看到Springboot集成线程池的例子, 这里自己做了个尝试和总结, 记录一下, 也分享给需要的朋友; 不考虑事务的情况下, 这个多线程实现比较简单, 主要有以下几点: 在启动类加上Enab…...

怎样接入chatGPT

官网链接&#xff1a; OpenAI platform...

Docker consul容器服务更新与发现

Docker consul容器服务更新与发现 一、什么事服务注册与发现二、什么是consul三、consul部署1、consul服务器2、registrator服务器3、consul-template 一、什么事服务注册与发现 服务注册与发现是微服务架构中不可或缺的重要组件。起初服务都是单节点的&#xff0c;不保障高可…...

[算法很美打卡] 多维数组篇 (打卡第一天)

文章目录 顺时针打印二维数组0所在的行列清零 顺时针打印二维数组 package 每日算法学习打卡.算法打卡.七月份.七月二十六号;public class test1 {public static void main(String[] args) {int[][] matrix {{1,2},{5,6},{9,10},{13,14},};print(matrix);}static void print(i…...

微服务系列(1)-who i am?

微服务系列&#xff08;1&#xff09;-我是谁 应用架构的演化 简单来说系统架构可以分为以下几个阶段&#xff1a;复杂的臃肿的单体架构-SOA架构-微服务 单体架构及其所面临的问题 在互联网发展初期&#xff0c;用户数量少&#xff0c;流量小&#xff0c;硬件成本高。因此…...

记录这这段时间发生的事情。

当做后端的时候总是被骂做前很丑。成为一个UI设计师与后端工程师才会更加完美。 尝试着做一个主页面。 创建了一个主页面 的表格index。 收录了希望发送到主页的&#xff0c;的帖子。 并且&#xff0c;可以填写是否可以。 一个看起来不错的主页。 标题设计的左右框。 这种框…...

发布npm包流程

发布npm包的步骤如下&#xff1a; 在终端中通过 npm init 命令创建一个新的npm包&#xff0c;按照提示填写包的信息&#xff0c;如包名称、版本、描述、作者、许可证等。 在包的根目录下创建一个 index.js 文件&#xff0c;编写你的代码。 确认你已经注册了npm账号&#xff0…...

面试官:Redis 为什么变慢了?怎么解决?

一、Redis为什么变慢了 二、Redis如何优化 三、Redis变慢了排查步骤 一、Redis为什么变慢了 1.Redis真的变慢了吗&#xff1f; 对 Redis 进行基准性能测试 例如&#xff0c;我的机器配置比较低&#xff0c;当延迟为 2ms 时&#xff0c;我就认为 Redis 变慢了&#xff0c;…...

Docker:开启应用程序开发新篇章的利器

Docker&#xff1a;开启应用程序开发新篇章的利器 引言&#xff1a;1. Docker 的基本概念2. Docker 的优势3. Docker 在应用程序开发中的实际应用如何创建docker镜像如何部署docker镜像结论&#xff1a; 引言&#xff1a; 在现代软件开发领域中&#xff0c;容器化技术正在迅猛…...

Python面向对象(三)(继承、封装)

面向对象的三大特性 面向对象编程&#xff0c;是许多编程语言都支持的一种编程思想。 简单理解是&#xff1a;基于模板&#xff08;类&#xff09;去创建实体&#xff08;对象&#xff09;&#xff0c;使用对象完成功能开发。 面向对象包含3大主要特性&#xff1a; 封装 封…...

Redis Stream 流的深度解析与实现高级消息队列【一万字】

详细介绍了 Redis 5.0 版本新增加的数据结构Stream的使用方式以及原理&#xff0c;如何实现更加可靠的消息队列。 文章目录 Stream 概述2 Stream基本结构3 存储数据3.1 Entry ID3.2 数量限制 4 获取数据4.1 范围查询4.2 独立消费消息4.2.1 非阻塞使用4.2.2 阻塞的使用 4.3 消费…...

一个灵活、现代的Android应用架构

一个灵活、现代的Android应用架构 学习Android架构的原则&#xff1a;学习原则&#xff0c;不要盲目遵循规则。 本文旨在通过示例演示实际应用&#xff1a;通过示范Android架构来进行教学。最重要的是&#xff0c;这意味着展示出如何做出各种架构决策。在某些情况下&#xff0…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...