ChatGPT统计“一到点就下班”的人数
ChatGPT统计“一到点就下班”的人数
1、到点下班
Chatgpt统计各部门F-D级员工到点下班人数占比,是在批评公司内部存在到点下班现象。
根据图片,该占比的计算方法是:最后一次下班卡在17:30-17:40之间,且1-5月合计有40天以上的人员人数/5月末在职人数。售后、国际合作、工程院到点下班人数占比位列前三。 打工人心态和比王的*军两派观点分歧。网传的“违纪榜”公示工作时间刷手机、刷网站、看新闻等行为。
2、业绩水涨床
今年5月份,出现“员工排队离职”的新闻,但据回复,排队辞职等说法与事实不符。数据显示,6月累计销售253046辆,今年1-6月累计销量已经达到125.56万辆,上半年的目标完成率为41.85%。比王的销量翻了几番,荣登全球新能源汽车销冠,业绩水涨床高,营收利润翻番。
3、兼顾员工的个人利益
希望比王在销量突飞猛进的同时,也兼顾员工的个人利益。
上个月把一个编程方向的公众号改成了追热点的公众号,原因很简单,技术公众号阅读量越来越低,变现也越来越难。以前迫于文笔差,写不出好文章,一直想转型,但转不动。有了GPT就简单多了,除了前几次对gpt调优很费劲,基本上1个多小时才能完成一篇文章,训练几次好多了,目前20分钟左右就可以搞定一篇文章。而转型做追热点的公众号的原因很简单,赚流量主广告费,目前每天基本有20~50的收入,虽然很低,但已经很知足了,毕竟刚开始嘛,有信心后面做到每天80左右!感慨一下,公众号的流量主比百家号,头条号好多太多了。也算是给大家一个副业方向吧。另外呢,一直都在分享一些关于ChatGPT的提问姿势和一些零零散散的写作技巧。今天就把这些零散的点串成线,带大家实战一波如何使用ChatGPT追热点写文章,目前已经用这个套路写了不少公众号的文章,效果还可以。下面是几篇个人认为还不错的文章,80%的内容都是由ChatGPT完成的。
<template><blockquote data-tool="" style="visibility: visible;"><p style="text-align: left; visibility: visible;"><span style="font-size: 16px; font-family: arial, helvetica, sans-serif; visibility: visible;">{{ title||'引用1' }}</span></p></blockquote>
</template><script>
export default {
props:['title'],methods: {}
}
</script><style scoped>blockquote {color: rgba(255,255,255,.55);}blockquote {padding-left: 10px;border-left: 3px solid #DBDBDB;color: rgba(0,0,0,.5);font-size: 15px;padding-top: 4px;margin: 1em 0;}p {clear: both;min-height: 1em;}span{max-width: 100%!important;box-sizing: border-box!important;-webkit-box-sizing: border-box!important;word-wrap: break-word!important;}
</style>
相关文章:

ChatGPT统计“一到点就下班”的人数
ChatGPT统计“一到点就下班”的人数 1、到点下班 Chatgpt统计各部门F-D级员工到点下班人数占比,是在批评公司内部存在到点下班现象。 根据图片,该占比的计算方法是:最后一次下班卡在17:30-17:40之间,且1-5月合计有40天以上的人…...

Games101学习笔记 - 变换矩阵基础
二维空间下的变换 缩放矩阵 缩放变换: 假如一个点(X,Y)。x经过n倍缩放,y经过m倍缩放,得到的新点(X1,Y1);那么新点和远点有如下关系,X1 n*X, Y1 m*Y写成矩阵就是如下…...

Ubuntu18.04未安装Qt报qt.qpa.plugin could not load the Qt platform plugin xcb问题的解决方法
在Ubuntu 18.04开发机上安装了Qt 5.14.2,当将其可执行程序拷贝到另一台未安装Qt的Ubuntu 18.04上报错:拷贝可执行程序前,使用ldd将此执行程序依赖的动态库也一起拷贝过去,包括Qt5.14.2/5.14.2/gcc_64/plugins目录系的platforms目录…...

GPT4ALL私有化部署 01 | Python环境
进入以下链接: https://www.python.org/downloads/release/python-3100/ 滑动到底部 选择你系统对应的版本,如果你是win,那么大概率是win-64bit 有可能你会因为网络的问题导致下载不了,我提供了 链接 接着只需要打开 等待…...

GPT-AI 使用的技术概览
ChatGPT 使用的技术概览 智心AI-3.5/4模型,联网对话,MJ快速绘画 从去年 OpenAI 发布 ChatGPT 以来,AI 的能力再次惊艳了世人。在这样的一个时间节点,重新去学习相关技术显得很有必要。 ChatGPT 的内容很多,我计划采用…...

NoSQL-Redis持久化
NoSQL-Redis持久化 一、Redis 高可用:1.概述: 二、Redis持久化:1.持久化的功能:2.Redis 提供两种方式进行持久化: 三、RDB 持久化:1.定义:2.触发条件:3.执行流程:4.启动时…...

关于uniapp中的日历组件uni-calendar中的小红点
关于uniapp中的日历组件uni-calendar中的小红点 如果你使用过uni-calendar组件,可能你觉得这个小红点有点碍眼,但是官方给定的日历组件uni-calendar中如果你想要在某一天上添加一些信息例如:价格,签到,打卡之类,只要标…...

【Nodejs】Node.js简介
1.前言 Node 的重要性已经不言而喻,很多互联网公司都已经有大量的高性能系统运行在 Node 之上。Node 凭借其单线程、异步等举措实现了极高的性能基准。此外,目前最为流行的 Web 开发模式是前后端分离的形式,即前端开发者与后端开发者在自己喜…...

SpringBoot整合Druid
在Spring Boot中整合Druid时,需要导入Druid和JDBC的相关依赖,但不需要额外导入单独的JDBC包。 Druid是一个用于数据库连接池和监控的开源框架,它已经包含了对JDBC的实现。因此,当你导入Druid的依赖时,它已经包含了对J…...

mysql(二)SQL语句
目录 一、SQL语句类型 二、数据库操作 三、数据类型 四、创建 五、查看 六、更改 七、增、删、改、查 八、查询数据 一、SQL语句类型 SQL语句类型: DDL DDL(Data Definition Language,数据定义语言):用于…...

Unity自定义后处理——Tonemapping色调映射
大家好,我是阿赵。 继续介绍屏幕后处理,这一期介绍一下Tonemapping色调映射 一、Tone Mapping的介绍 Tone Mapping色调映射,是一种颜色的映射关系处理,简单一点说,一般是从原始色调(通常是高动态范围&…...
Redis学习 知识总结 一
Redis学习 知识总结 一 1 Redis初识1.1 Redis八大特性1.2 redis使用场景1.3 Docker安装redis 2 API的理解和使用2.1 通用命令2.2 字符串(String)类型2.3 哈希(Hash)类型2.4 有序列表(list)2.5 集合…...
Webpack5 vue-loader和VueLoaderPlugin
文章目录 vue-loader和VueLoaderPlugin的作用vue-loader具体使用方式注意事项 vue-loader和VueLoaderPlugin的作用 .vue 文件是用户用 HTML-like 的语法编写的 Vue 组件。每个vue 文件都包括三部分 , VueLoaderPlugin 是一个解析 Vue.js 的插件,用于在 webpack 构…...
【传统视觉】模板匹配和卡尺圆检测
模板匹配 粗定位 1、原理:模板匹配是指在当前图像A中匹配与图像B最相似的部分,那么A为输入图像,B为模板图像。 2、匹配方法:B在A上华东,逐个遍历所有像素完成匹配。 3、函数: result cv2.matchTemplate(…...

记一次简单的MySql注入试验
试验环境: 1.已经搭建好的php服务器,并可以通过访问到localhost/index.php; 2.已经安装好数据库,并创建表test,表内有name、age等字段,并随便创建几个假数据用于测试;如图: 开始测…...

软考开发思考(完善中)
软考开发思考 文章目录 软考开发思考1. 互联网媒体:新技术和新应用及当前的趋势和应用1.1 自动化报道1.2. 虚拟和增强现实1.3. 数据新闻1.4. 即时新闻推送1.5 智能助手和聊天机器人1.6 语音播报,语音检索,后台播放、播放倍速。1.6 机器人交互…...

[NLP]LLaMA与LLamMA2解读
摘要 Meta最近提出了LLaMA(开放和高效的基础语言模型)模型参数包括从7B到65B等多个版本。最值得注意的是,LLaMA-13B的性能优于GPT-3,而体积却小了10倍以上,LLaMA-65B与Chinchilla-70B和PaLM-540B具有竞争性。 一、引言 一般而言࿰…...

后端一次返回大量数据,前端做分页处理
问题描述:后端接口返回大量数据,没有做分页处理,不支持传参pageNum,pageSize 本文为转载文章,原文章:后端一次返回大量数据,前端做分页处理 1.template中 分页 <el-paginationsize-chang…...

卷积神经网络识别人脸项目—使用百度飞桨ai计算
卷积神经网络识别人脸项目的详细过程 整个项目需要的准备文件: 下载链接: 链接:https://pan.baidu.com/s/1WEndfi14EhVh-8Vvt62I_w 提取码:7777 链接:https://pan.baidu.com/s/10weqx3r_zbS5gNEq-xGrzg 提取码&#x…...

vue中预览静态pdf文件
方法 // pdf预览 viewFileCompare() { const pdfUrl "/static/wjbd.pdf"; window.open(pdfUrl); }, // 下载 downloadFile(){ var a document.createElement("a"); a.href "/static/wjbd.pdf"; a.…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...