ChatGPT统计“一到点就下班”的人数
ChatGPT统计“一到点就下班”的人数
1、到点下班
Chatgpt统计各部门F-D级员工到点下班人数占比,是在批评公司内部存在到点下班现象。
根据图片,该占比的计算方法是:最后一次下班卡在17:30-17:40之间,且1-5月合计有40天以上的人员人数/5月末在职人数。售后、国际合作、工程院到点下班人数占比位列前三。 打工人心态和比王的*军两派观点分歧。网传的“违纪榜”公示工作时间刷手机、刷网站、看新闻等行为。
2、业绩水涨床
今年5月份,出现“员工排队离职”的新闻,但据回复,排队辞职等说法与事实不符。数据显示,6月累计销售253046辆,今年1-6月累计销量已经达到125.56万辆,上半年的目标完成率为41.85%。比王的销量翻了几番,荣登全球新能源汽车销冠,业绩水涨床高,营收利润翻番。
3、兼顾员工的个人利益
希望比王在销量突飞猛进的同时,也兼顾员工的个人利益。
上个月把一个编程方向的公众号改成了追热点的公众号,原因很简单,技术公众号阅读量越来越低,变现也越来越难。以前迫于文笔差,写不出好文章,一直想转型,但转不动。有了GPT就简单多了,除了前几次对gpt调优很费劲,基本上1个多小时才能完成一篇文章,训练几次好多了,目前20分钟左右就可以搞定一篇文章。而转型做追热点的公众号的原因很简单,赚流量主广告费,目前每天基本有20~50的收入,虽然很低,但已经很知足了,毕竟刚开始嘛,有信心后面做到每天80左右!感慨一下,公众号的流量主比百家号,头条号好多太多了。也算是给大家一个副业方向吧。另外呢,一直都在分享一些关于ChatGPT的提问姿势和一些零零散散的写作技巧。今天就把这些零散的点串成线,带大家实战一波如何使用ChatGPT追热点写文章,目前已经用这个套路写了不少公众号的文章,效果还可以。下面是几篇个人认为还不错的文章,80%的内容都是由ChatGPT完成的。
<template><blockquote data-tool="" style="visibility: visible;"><p style="text-align: left; visibility: visible;"><span style="font-size: 16px; font-family: arial, helvetica, sans-serif; visibility: visible;">{{ title||'引用1' }}</span></p></blockquote>
</template><script>
export default {
props:['title'],methods: {}
}
</script><style scoped>blockquote {color: rgba(255,255,255,.55);}blockquote {padding-left: 10px;border-left: 3px solid #DBDBDB;color: rgba(0,0,0,.5);font-size: 15px;padding-top: 4px;margin: 1em 0;}p {clear: both;min-height: 1em;}span{max-width: 100%!important;box-sizing: border-box!important;-webkit-box-sizing: border-box!important;word-wrap: break-word!important;}
</style>
相关文章:

ChatGPT统计“一到点就下班”的人数
ChatGPT统计“一到点就下班”的人数 1、到点下班 Chatgpt统计各部门F-D级员工到点下班人数占比,是在批评公司内部存在到点下班现象。 根据图片,该占比的计算方法是:最后一次下班卡在17:30-17:40之间,且1-5月合计有40天以上的人…...

Games101学习笔记 - 变换矩阵基础
二维空间下的变换 缩放矩阵 缩放变换: 假如一个点(X,Y)。x经过n倍缩放,y经过m倍缩放,得到的新点(X1,Y1);那么新点和远点有如下关系,X1 n*X, Y1 m*Y写成矩阵就是如下…...

Ubuntu18.04未安装Qt报qt.qpa.plugin could not load the Qt platform plugin xcb问题的解决方法
在Ubuntu 18.04开发机上安装了Qt 5.14.2,当将其可执行程序拷贝到另一台未安装Qt的Ubuntu 18.04上报错:拷贝可执行程序前,使用ldd将此执行程序依赖的动态库也一起拷贝过去,包括Qt5.14.2/5.14.2/gcc_64/plugins目录系的platforms目录…...

GPT4ALL私有化部署 01 | Python环境
进入以下链接: https://www.python.org/downloads/release/python-3100/ 滑动到底部 选择你系统对应的版本,如果你是win,那么大概率是win-64bit 有可能你会因为网络的问题导致下载不了,我提供了 链接 接着只需要打开 等待…...

GPT-AI 使用的技术概览
ChatGPT 使用的技术概览 智心AI-3.5/4模型,联网对话,MJ快速绘画 从去年 OpenAI 发布 ChatGPT 以来,AI 的能力再次惊艳了世人。在这样的一个时间节点,重新去学习相关技术显得很有必要。 ChatGPT 的内容很多,我计划采用…...

NoSQL-Redis持久化
NoSQL-Redis持久化 一、Redis 高可用:1.概述: 二、Redis持久化:1.持久化的功能:2.Redis 提供两种方式进行持久化: 三、RDB 持久化:1.定义:2.触发条件:3.执行流程:4.启动时…...

关于uniapp中的日历组件uni-calendar中的小红点
关于uniapp中的日历组件uni-calendar中的小红点 如果你使用过uni-calendar组件,可能你觉得这个小红点有点碍眼,但是官方给定的日历组件uni-calendar中如果你想要在某一天上添加一些信息例如:价格,签到,打卡之类,只要标…...

【Nodejs】Node.js简介
1.前言 Node 的重要性已经不言而喻,很多互联网公司都已经有大量的高性能系统运行在 Node 之上。Node 凭借其单线程、异步等举措实现了极高的性能基准。此外,目前最为流行的 Web 开发模式是前后端分离的形式,即前端开发者与后端开发者在自己喜…...

SpringBoot整合Druid
在Spring Boot中整合Druid时,需要导入Druid和JDBC的相关依赖,但不需要额外导入单独的JDBC包。 Druid是一个用于数据库连接池和监控的开源框架,它已经包含了对JDBC的实现。因此,当你导入Druid的依赖时,它已经包含了对J…...

mysql(二)SQL语句
目录 一、SQL语句类型 二、数据库操作 三、数据类型 四、创建 五、查看 六、更改 七、增、删、改、查 八、查询数据 一、SQL语句类型 SQL语句类型: DDL DDL(Data Definition Language,数据定义语言):用于…...

Unity自定义后处理——Tonemapping色调映射
大家好,我是阿赵。 继续介绍屏幕后处理,这一期介绍一下Tonemapping色调映射 一、Tone Mapping的介绍 Tone Mapping色调映射,是一种颜色的映射关系处理,简单一点说,一般是从原始色调(通常是高动态范围&…...
Redis学习 知识总结 一
Redis学习 知识总结 一 1 Redis初识1.1 Redis八大特性1.2 redis使用场景1.3 Docker安装redis 2 API的理解和使用2.1 通用命令2.2 字符串(String)类型2.3 哈希(Hash)类型2.4 有序列表(list)2.5 集合…...
Webpack5 vue-loader和VueLoaderPlugin
文章目录 vue-loader和VueLoaderPlugin的作用vue-loader具体使用方式注意事项 vue-loader和VueLoaderPlugin的作用 .vue 文件是用户用 HTML-like 的语法编写的 Vue 组件。每个vue 文件都包括三部分 , VueLoaderPlugin 是一个解析 Vue.js 的插件,用于在 webpack 构…...
【传统视觉】模板匹配和卡尺圆检测
模板匹配 粗定位 1、原理:模板匹配是指在当前图像A中匹配与图像B最相似的部分,那么A为输入图像,B为模板图像。 2、匹配方法:B在A上华东,逐个遍历所有像素完成匹配。 3、函数: result cv2.matchTemplate(…...

记一次简单的MySql注入试验
试验环境: 1.已经搭建好的php服务器,并可以通过访问到localhost/index.php; 2.已经安装好数据库,并创建表test,表内有name、age等字段,并随便创建几个假数据用于测试;如图: 开始测…...

软考开发思考(完善中)
软考开发思考 文章目录 软考开发思考1. 互联网媒体:新技术和新应用及当前的趋势和应用1.1 自动化报道1.2. 虚拟和增强现实1.3. 数据新闻1.4. 即时新闻推送1.5 智能助手和聊天机器人1.6 语音播报,语音检索,后台播放、播放倍速。1.6 机器人交互…...

[NLP]LLaMA与LLamMA2解读
摘要 Meta最近提出了LLaMA(开放和高效的基础语言模型)模型参数包括从7B到65B等多个版本。最值得注意的是,LLaMA-13B的性能优于GPT-3,而体积却小了10倍以上,LLaMA-65B与Chinchilla-70B和PaLM-540B具有竞争性。 一、引言 一般而言࿰…...

后端一次返回大量数据,前端做分页处理
问题描述:后端接口返回大量数据,没有做分页处理,不支持传参pageNum,pageSize 本文为转载文章,原文章:后端一次返回大量数据,前端做分页处理 1.template中 分页 <el-paginationsize-chang…...

卷积神经网络识别人脸项目—使用百度飞桨ai计算
卷积神经网络识别人脸项目的详细过程 整个项目需要的准备文件: 下载链接: 链接:https://pan.baidu.com/s/1WEndfi14EhVh-8Vvt62I_w 提取码:7777 链接:https://pan.baidu.com/s/10weqx3r_zbS5gNEq-xGrzg 提取码&#x…...

vue中预览静态pdf文件
方法 // pdf预览 viewFileCompare() { const pdfUrl "/static/wjbd.pdf"; window.open(pdfUrl); }, // 下载 downloadFile(){ var a document.createElement("a"); a.href "/static/wjbd.pdf"; a.…...

Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...

Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

认识CMake并使用CMake构建自己的第一个项目
1.CMake的作用和优势 跨平台支持:CMake支持多种操作系统和编译器,使用同一份构建配置可以在不同的环境中使用 简化配置:通过CMakeLists.txt文件,用户可以定义项目结构、依赖项、编译选项等,无需手动编写复杂的构建脚本…...

9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...