当前位置: 首页 > news >正文

大模型,开源干不掉闭源

6e3161ad584806942309b9b4c862a5cb.jpeg

开源大模型对闭源大模型的冲击,变得非常猛烈。

今年3月,Meta发布了Llama(羊驼),很快成为AI社区内最强大的开源大模型,也是许多模型的基座模型。有人戏称,当前的大模型集群,就是一堆各种花色的“羊驼”。

而就在前些天,Meta又推出了免费可商用版本的“羊驼2号”——Llama2,据说性能比肩GPT-3.5。

477eca6a97f3ae71f99110b8389490ba.png

这在整个大模型圈都是非常炸裂的。

我们知道,各个互联网、科技公司都在竞相训练、推出自己的大模型,投入了大量的计算资源和成本,如果不能有效的完成商业化,那么这些大模型就很难回收成本,后续的迭代、更新、升级都成问题,不仅研发企业会亏个底掉,更苦恼的大概就是“前功尽弃”的用户了。

而现在有了自由开放强大的开源大模型,谁还愿意给闭源大模型送钱呢?

还真的有。

开源是大势所趋,但闭源大模型依然有其存在意义和商业价值。按照目前的AI产业落地经验来看,用好大模型,还是得靠闭源。

今天我们就来聊聊这个问题,到底是谁,需要闭源大模型?

到产业去,到产业去

251a5daa9161db54d110d773f682b270.png

大模型的商业化终点是产业,想必已经是不用过多解释的共识了。

前不久,我参加某一个国产大模型的内部沟通会,对方高层就明确表示,自己全部用的是闭源代码,并且坚持走闭源路线,就是考虑到训练大模型与行业伙伴合作,其中很多隐私数据是不方便开源的。

见一斑可窥全豹,至少在短期内,大模型走向产业,落地还是要靠闭源。

模型方面,闭源大模型的质量更高。

就拿目前最能打的Llama 2为例,Meta 将 Llama 2 70B 的结果,与闭源模型进行了比较,结果在 MMLU 和 GSM8K 上接近 GPT-3.5,但在编码基准上,还存在显著差距,不少数据在多样性和质量方面有所欠缺。

当然,开源大模型的优化迭代速度很快。但开源的本质和“有性繁殖”很像,就是通过大量繁殖和变异,如同开篇那张“羊驼集群”一样,面对不确定的未来,借助进化的“优胜劣汰”,让最优质的后代持续涌现。所以,开源软件的分支多,对用户来说,这个选择的成本是很高的,加上开发人员众多,版本控制是一个问题。

安全性方面,闭源大模型的可靠性更高。

开源大模型要遵守开源协议,商业使用需要获得授权,海外开源大模型也要受到属地管辖,github就曾封禁俄罗斯开发者账号。使用海外开源大模型开发产品,供应链的风险,是客观存在的。

那么,使用国产开源大模型呢?安全性得到保障,但从商业角度看,很多客户,如大型政企,也非常看重大模型在业务上的可靠性,采购时往往需要大公司的品牌背书。一方面研发投入更大,口碑更高;另一方面,万一大模型生成不当,导致商业损失或商誉问题,使用闭源大模型可以问责服务商,使用开源大模型总不能找全球开发者算账吧?

比如大模型创业公司Huging Face,为客户提供AI咨询,是开源社区的台柱子,表示有大量客户希望把自己的私有数据/专业数据用来训模型,并不想把这些数据给到 OpenAl。

3f563f08d8c38c09fd8aabdc3046ec6e.png

产业化方面,闭源大模型的长期服务能力更强、更可用。

大模型落地,并不是接入API、塞进数据、调参优化就结束了。作为一种新兴技术,大模型与业务场景的融合,还有非常多挑战。比如大模型需要通过蒸馏压缩,减小模型规模,才能在端侧部署,很多企业根本没有这类专业人才。

再比如,大模型与业务结合,需要产品、运营、测试工程师等多种角色共同参与,这些服务能力是以coder为主的开源团队,所很难提供的。此外,大模型的长期应用,算力、存储、网络等配套都要跟上,开源社区无法帮助用户“一站式”解决这些细节问题。

还有数据隐私顾虑,大模型是不能直接为产业所用的,还要通过专有场景数据进行优化,而这些数据训练完的模型会被开源开放出去,让企业顾虑重重。

我们曾采访过一个智慧医疗研发团队,对方表示,大量医疗数据分布在各大医院、研究机构,又涉及患者隐私,大家对于把数据拿出来共同训练一个行业模型,都存在顾虑。一方面是安全得不到保障,另一方面是自己的数据质量高,但从中得不到恰当的回报,和其他数据质量低的机构一样,很难协调。在开源大模型的共建中,如何得到数据、把握配方、确定各方贡献,还存在很多难题。

开源大模型需要平衡技术创新自由和版权收益之间的冲突,而使用闭源大模型就没有这方面的麻烦,数据和模型的所有权、使用权都很清晰,牢牢掌握在企业自己手里。

可以说,目前开源大模型还无法达到实际的业务需求。而开源大模型使用者和ISV集成商,是需要获得商业回报的,如果开源大模型不可商用、效果不好、很难赚钱,那么即使免费,企业也会慎重考虑要不要投入人来开发。

所以,未来一段时间,闭源依然是大模型落地产业的热门选择。

c6fddb31407d79b7b640b84f6a147b51.png

到群众去,到群众去

可能有人不理解了,开源免费商用,大家都能用上白菜价的大模型了,对开发者和企业用户多友好,你怎么还说闭源好?是不是为一门心思赚钱的大厂站台?

非也。

但凡了解开源,都会支持开源。但凡支持开源,都会关注开源的商业化。

中国科学院梅宏院士曾说过,开源以理想主义为源起,以商业化为蓬勃助力,是开放创新的典范。没有商业化,不可能有开源。

所以,开源也好,闭源也好,谁能更早“可商用”,谁就更有未来。这一点上,闭源大模型可能更占优势,毕竟有底气闭源的厂商,还是有两把刷子和研发家底儿的。

那么,开源大模型的优势在哪里呢?如果说闭源大模型要到产业去,那么开源大模型就要到群众中去,主打一个人多力量大。

dc11f479e57093738636c02b023173d9.png

(LeCun认为Llama-v2会改变LLM的市场格局)

开源大模型不同于传统开源软件,把源代码放上去,然后全球开发者来贡献代码就完了。大模型的协同共建,更多体现在社区繁荣,大家一起把模型做优化、数据做丰富、工具做完善、应用做全面……

这时候,开源模式能够带来几个好处:

1.技术创新。开源社区可以汇聚广大科技企业、研究机构和开发者,对模型进行优化、改进、加速迭代,让模型技术和配套数据集、应用工具等,变得丰富、高质,从而保持领先。

2.人才争夺。大模型作为新兴技术,人才紧缺,通过开源社区吸引全球优秀人才做贡献,加速大模型升级,能够拉开差距。有竞争才有压力,所以LLama 2发布之后,很快传出OpenAI也开始考虑半年内开源GPT-3.5的消息,开发者们有福了。

3.生态合拢。目前各行各业的IT解决方案和数字化转型,大量使用开源技术和应用,建设大模型开源生态,让IT人才和企业使用相关技术,对于后期的商业化非常有帮助。比如OpenAI 的合作伙伴/投资方微软,这次也选择成为Llama 2 的首要合作伙伴,支持个人开发者和中小公司以最低成本调用Llama 2,这对azure无疑是一大利好。

不是所有开源大模型都能成功,生态是关键的护城河。

夹心饼干,向何处去?

7b2f884bfea57d02b7de6f4d6cf002be.png

就像手机操作系统的 iOS 与 Andriod,开源与闭源的竞争,并不是某一个领域打的“你死我活”,而是各自走出一条差异化的道路,迎来自己的天地。大模型也是如此。

闭源大模型开门迎客,开源大模型红红火火,大家都有光明的未来。

既然如此,为什么还有专家认为,Llama 2开源对开源来说是一个巨大的飞跃,但对闭源的大模型公司是一个巨大打击?

究竟打击了谁?

答案应该是,既不甘心只做应用层、又没能力卷过大厂的基础大模型厂商。

谷歌研究人员曾发文说,因为有开源社区,我们(Google和OpenAI)没有护城河。但是,OpenAI还有GPT-4这样的闭源大模型作为杀手锏,只有被开源逼急了的情况下,才考虑把GPT-3.5开源,这里面是有技术代差的。而且GPT-3.5开源只透露了口风,具体进展还是未知数。

所以,这类头部科技厂商和云巨头,如海外的谷歌、OpenAI,国内的BATH,卡、钱、人才、数据、市场认知度、客户基础都有优势,走闭源路线来完成大模型商业化、产业化是有一定先发优势和壁垒的。

这就苦了那些一心想训基础通用大模型的二三线厂商了。

此前,全球大小科技公司和各类科研机构,一拥而上训基础大模型,比如某些机器视觉AI独角兽,不小心就成了基础层和应用层之间的“夹心饼干”。

实力上打不过GPT,成本上打不过Llama,训出来的基础通用大模型,还没等到正式开放商用,就已经过时了,注定是明日黄花。市场上拼不过巨头,开放度不如开源社区,几乎不可能收回高昂的开发成本。

趁早放弃死磕大模型,或许才是明智选择。

比如国内某AI公司的大模型,此前私有化报价是一年30万,随后就宣布对学术研究完全开放,获得授权可免费商用。做大模型开源社区,也有商业化的可能(如Linux/ Android/红帽),同时也能避免跟头部的通用大模型的“硬碰硬”。

9fdf009d6dc318a1f665ab1525071ca8.png

(知名投资人关于Llama2开源的讨论截图/来自网络)

对于应用层开发者和ISV集成商企业来说,用好产业接受度高的闭源大模型,可以更快让客户接受,更适合私有化定制部署的业务需求,更快完成商业落地和收入增长。

对于AI创业公司来说,开源直接就能用,避免重复造轮子,可能是更理想、低成本试错的商业化手段,“报团取暖”贡献大模型开源项目,推动大模型开源社区的发展,也会获得社区回馈和商业回馈。

中国大模型发展到高水平,既要有全球领先的闭源大模型打头阵,也要有具备世界影响力的大模型开源社区。

道阻且长,行则将至。不妨用建设性心态,来看待开源闭源之争,给国产闭源大模型一些信心,也给国內开源社区一些鼓励和支持。

e9316afc56a073e3e571ba39f3d8f2d9.gif

相关文章:

大模型,开源干不掉闭源

开源大模型对闭源大模型的冲击,变得非常猛烈。 今年3月,Meta发布了Llama(羊驼),很快成为AI社区内最强大的开源大模型,也是许多模型的基座模型。有人戏称,当前的大模型集群,就是一堆各…...

Redis 九种数据类型的基本操作

一、redis9种数据类型的基本操作 ①key操作 #查找所有的key 127.0.0.1:6379> keys * 1) "pop" 2) "mylist" 3) "lpl" 4) "myset" #设置key的过期时间 返回1表示执行成功,0表示失败,出现问题 127.0.0.1:6379…...

爬取微博热搜榜并进行数据分析

设计方案 爬虫爬取的内容 :爬取微博热搜榜数据。 网络爬虫设计方案概述 用requests库访问页面用get方法获取页面资源,登录页面对页面HTML进行分析,用beautifulsoup库获取并提取自己所需要的信息。再讲数据保存到CSV文件中,进行…...

基于深度神经网络的肺炎检测系统实现

一、说在前面 使用AI进行新冠肺炎图像诊断可以加快病例的诊断速度,提高诊断的准确性,并在大规模筛查中发挥重要作用,从而更好地控制和管理这一流行病。然而,需要强调的是,AI技术仅作为辅助手段,最终的诊断决…...

C# LINQ和Lambda表达式对照

C# LINQ和Lambda表达式对照 1. 基本查询语句 Linq语法: var datafrom a in db.Areas select a ; Lamda语法: var datadb.Areas; sql语法: SELECT * FROM Areas2. 简单的WHERE语句 Linq语法: var datafrom a in db.orderI…...

二、SQL-6.DCL-1).用户管理

一、DCL介绍 Data Control Language 数据控制语言 用来管理数据库 用户、控制数据库的 访问权限。 二、语法 1、管理用户 管理用户在系统数据库mysql中的user表中创建、删除一个用户,需要Host(主机名)和User(用户名&#xff0…...

ElasticSearch学习--数据聚合

介绍 数据聚合可以帮助我们对海量的数据进行统计分析,如果结合kibana,我们还能形成可视化的图形报表。自动补全可以根据用户输入的部分关键字去自动补全和提示。数据同步可以帮助我们解决es和mysql的数据一致性问题。集群可以帮助我们了解结构和不同节点…...

PostMan+Jmeter工具介绍及安装

目录 一、PostMan介绍​编辑 二、下载安装 三、Postman与Jmeter的区别 一、开发语言区别: 二、使用范围区别: 三、使用区别: 四、Jmeter安装 附一个详细的Jmeter按照新手使用教程,感谢作者,亲测有效。 五、Jme…...

AutoSAR系列讲解(实践篇)7.4-实验:配置SWCRTE

注意: 实验篇是重点,有条件的同学最好跟着做一遍,然后回头对照着7.1-7.3理解其配置的目的和意义。实验下篇将在7.7节中继续做 一、实验概览 1、实验目的 通过本次实验,主要是让大家对Dev的配置有一个全流程的学习。这里会用到前两节的内容,将其串联起来,让大家能完整的…...

腾讯云内存型CVM服务器MA3、M6、M6ce和M5处理器CPU说明

腾讯云内存型CVM服务器CPU处理器大全,CVM内存型MA3、内存型M6、安全增强内存型M6ce、内存型M6p、内存型M5、MA2、M4、M3、M2、M1处理器主频、CPU性能性能大全说明,腾讯云内存型云服务器具有大内存的特点,适合高性能数据库、分布式内存缓存等需…...

集睿致远推出CS5466多功能拓展坞方案:支持DP1.4、HDMI2.1视频8K输出

ASL新推出的 CS5466是一款Type-C/DP1.4转HDMI2.1的显示协议转换芯片,,它通过类型C/显示端口链路接收视频和音 频流,并转换为支持TMDS或FRL输出信令。DP接收器支持81.Gbp s链路速率。HDMI输出端口可以作为TMDS或FRL发射机工作。FRL发射机符合HDMI 2.1规范…...

SQL中为何时常见到 where 1=1?

你是否曾在 SELECT 查询中看到过 WHERE 11 条件。我在许多不同的查询和许多 SQL 引擎中都有看过。这条件显然意味着 WHERE TRUE,所以它只是返回与没有 WHERE 子句时相同的查询结果。此外,由于查询优化器几乎肯定会删除它,因此对查询执行时间没…...

React AntDesign表批量操作时的selectedRowKeys回显选中

不知道大家是不是在AntDesign的某一个列表想要做一个批量导出或者操作的时候,发现只要选择下一页,即使选中的ids 都有记录下面,但是就是不回显 后来问了chatGPT,对方的回答是: 在Ant Design的DataTable组件中&#xf…...

anydesk远程控制,主动连接。

目标 远程控制目标电脑,且无需对方同意,并且可以控制目标电脑开关机。 实现 目标电脑和己方电脑均安装anydesk。目标电脑取消开机密码。打开目标电脑的anydesk在设置安全设置中打开为自主访问设置密码。 额外设置 为了让笔记本电脑合盖后仍能被控制…...

Spring Data Redis操作Redis

在Spring Boot项目中&#xff0c;可以使用Spring Data Redis来简化Redis操作&#xff0c;maven的依赖坐标&#xff1a; <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></…...

sqlite触发器1

SQLite 的触发器&#xff08;Trigger&#xff09;可以指定在特定的数据库表发生 DELETE、INSERT 或 UPDATE 时触发&#xff0c;或在一个或多个指定表的列发生更新时触发。 SQLite 只支持 FOR EACH ROW 触发器&#xff08;Trigger&#xff09;&#xff0c;没有 FOR EACH STATEM…...

python中——requests爬虫【中文乱码】的3种解决方法

requests是一个较为简单易用的HTTP请求库&#xff0c;是python中编写爬虫程序最基础常用的一个库。 而【中文乱码】问题&#xff0c;是最常遇到的问题&#xff0c;对于初学者来说&#xff0c;是很困恼的。 本文将详细说明&#xff0c;python中使用requests库编写爬虫程序时&…...

E. Nastya and Potions(DFS+记忆化搜索)

炼金术士纳斯蒂亚喜欢混合药剂。一共有n种药剂&#xff0c;ci硬币可以买到一种 i 型药剂。 任何一种药剂都只能通过一种方式获得&#xff0c;即混合其他几种药剂。混合过程中使用的药剂将被消耗掉。此外&#xff0c;任何药剂都不能通过一个或多个混合过程从自身获得。 作为一名…...

什么是tcp rst以及什么时候产生?

rst包是仅在header control bits设置rst的空payload包&#xff0c;用于强制关闭tcp连接。常在以下场景发送 远程主机没有监听该端口 远程主机强迫关闭了一个现有连接。比如服务端进程崩溃后重启会向之前连接发送rst 相比于四次挥手的fin&#xff0c;rst是在异常情况下的无条…...

Visual Studio Code配置免密远程开发环境

VSCode安装插件 要是想连接远程服务器&#xff0c;先在本地安装下面的插件&#xff08;红色圈起来的需要装&#xff09; 连接远程服务器 配置服务器信息 保存然后再连接&#xff0c;输入密码&#xff0c;如果能连接上说明是没问题的&#xff0c;下面开始免密登录 免密配置 客…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端&#xff08;即页面 JS / Web UI&#xff09;与客户端&#xff08;C 后端&#xff09;的交互机制&#xff0c;是 Chromium 架构中非常核心的一环。下面我将按常见场景&#xff0c;从通道、流程、技术栈几个角度做一套完整的分析&#xff0c;特别适合你这种在分析和改…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...