python与深度学习(六):CNN和手写数字识别二
目录
- 1. 说明
- 2. 手写数字识别的CNN模型测试
- 2.1 导入相关库
- 2.2 加载数据和模型
- 2.3 设置保存图片的路径
- 2.4 加载图片
- 2.5 图片预处理
- 2.6 对图片进行预测
- 2.7 显示图片
- 3. 完整代码和显示结果
- 4. 多张图片进行测试的完整代码以及结果
1. 说明
本篇文章是对上篇文章训练的模型进行测试。首先是将训练好的模型进行重新加载,然后采用opencv对图片进行加载,最后将加载好的图片输送给模型并且显示结果。
2. 手写数字识别的CNN模型测试
2.1 导入相关库
在这里导入需要的第三方库如cv2,如果没有,则需要自行下载。
from tensorflow import keras
# 引入内置手写体数据集mnist
from keras.datasets import mnist
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw # PIL就是pillow包(保存图像)
import numpy as np
2.2 加载数据和模型
把MNIST数据集进行加载,并且把训练好的模型也加载进来。
# 加载mnist数据
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 加载cnn_mnist.h5文件,重新生成模型对象, 等价于之前训练好的cnn_model
recons_model = keras.models.load_model('cnn_mnist.h5')
2.3 设置保存图片的路径
将数据集的某个数据以图片的形式进行保存,便于测试的可视化。
在这里设置图片存储的位置。
# 创建图片保存路径
test_file_path = os.path.join(sys.path[0], 'imgs', 'test100.png')
# 存储测试数据的任意一个
Image.fromarray(x_test[100]).save(test_file_path)
在书写完上述代码后,需要在代码的当前路径下新建一个imgs的文件夹用于存储图片,如下。
执行完上述代码后就会在imgs的文件中可以发现多了一张图片,如下(下面测试了很多次)。
2.4 加载图片
采用cv2对图片进行加载,下面最后一行代码取一个通道的原因是用opencv库也就是cv2读取图片的时候,图片是三通道的,而训练的模型是单通道的,因此取单通道。
# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(28,28)
test_img = cv2.resize(test_img, (28, 28))
# 取单通道值
test_img = test_img[:, :, 0]
print(test_img.shape)
2.5 图片预处理
对图片进行预处理,即进行归一化处理和改变形状处理,这是为了便于将图片输入给训练好的模型进行预测。
# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 28, 28, 1)
2.6 对图片进行预测
将图片输入给训练好我的模型并且进行预测。
预测的结果是10个概率值,所以需要进行处理, np.argmax()是得到概率值最大值的序号,也就是预测的数字。
# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
# 哪一类数字
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
print('test.png的所属类别/手写体数字:', class_id)
class_id = str(class_id)
2.7 显示图片
对预测的图片进行显示,把预测的数字显示在图片上。
下面6行代码分别是创建窗口,设定窗口大小,显示数字,显示图片,停留图片,清除内存。
# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500) # 自己设定窗口图片的大小
cv2.putText(image, class_id, (2, 5), cv2.FONT_HERSHEY_SCRIPT_SIMPLEX, 0.2, (255, 0, 0), 1)
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()
3. 完整代码和显示结果
以下是完整的代码和图片显示结果。
from tensorflow import keras
# 引入内置手写体数据集mnist
from keras.datasets import mnist
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw # PIL就是pillow包(保存图像)
import numpy as np# 加载mnist数据
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 加载cnn_mnist.h5文件,重新生成模型对象, 等价于之前训练好的cnn_model
recons_model = keras.models.load_model('cnn_mnist.h5')
# 创建图片保存路径
test_file_path = os.path.join(sys.path[0], 'imgs', 'test100.png')
# 存储测试数据的任意一个
Image.fromarray(x_test[100]).save(test_file_path)
# 加载本地test.png图像
image = cv2.imread(test_file_path)
# 复制图片
test_img = image.copy()
# 将图片大小转换成(28,28)
test_img = cv2.resize(test_img, (28, 28))
# 取单通道值
test_img = test_img[:, :, 0]
print(test_img.shape)
# 预处理: 归一化 + reshape
new_test_img = (test_img/255.0).reshape(1, 28, 28, 1)
# 预测
y_pre_pro = recons_model.predict(new_test_img, verbose=1)
# 哪一类数字
class_id = np.argmax(y_pre_pro, axis=1)[0]
print('test.png的预测概率:', y_pre_pro)
print('test.png的预测概率:', y_pre_pro[0, class_id])
print('test.png的所属类别/手写体数字:', class_id)
class_id = str(class_id)
# # 显示
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 500, 500) # 自己设定窗口图片的大小
cv2.putText(image, class_id, (2, 5), cv2.FONT_HERSHEY_SCRIPT_SIMPLEX, 0.2, (255, 0, 0), 1)
cv2.imshow('img', image)
cv2.waitKey()
cv2.destroyAllWindows()
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(28, 28)
1/1 [==============================] - 0s 210ms/step
test.png的预测概率: [[2.3381226e-05 1.1173951e-09 2.5884110e-09 2.3000638e-10 1.5515226e-073.6373976e-07 9.9997604e-01 5.8317045e-13 1.0071908e-07 1.6725430e-09]]
test.png的预测概率: 0.99997604
test.png的所属类别/手写体数字: 6
4. 多张图片进行测试的完整代码以及结果
为了测试更多的图片,引入循环进行多次测试,效果更好。
from tensorflow import keras
# 引入内置手写体数据集mnist
from keras.datasets import mnist
import skimage, os, sys, cv2
from PIL import ImageFont, Image, ImageDraw # PIL就是pillow包(保存图像)
import numpy as np# 加载mnist数据
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 加载cnn_mnist.h5文件,重新生成模型对象, 等价于之前训练好的cnn_model
recons_model = keras.models.load_model('cnn_mnist.h5')prepicture = int(input("input the number of test picture :"))
for i in range(prepicture):path1 = input("input the test picture path:")# 创建图片保存路径test_file_path = os.path.join(sys.path[0], 'imgs', path1)# 存储测试数据的任意一个num = int(input("input the test picture num:"))Image.fromarray(x_test[num]).save(test_file_path)# 加载本地test.png图像image = cv2.imread(test_file_path)# 复制图片test_img = image.copy()# 将图片大小转换成(28,28)test_img = cv2.resize(test_img, (28, 28))# 取单通道值test_img = test_img[:, :, 0]# 预处理: 归一化 + reshapenew_test_img = (test_img/255.0).reshape(1, 28, 28, 1)# 预测y_pre_pro = recons_model.predict(new_test_img, verbose=1)# 哪一类数字class_id = np.argmax(y_pre_pro, axis=1)[0]print('test.png的预测概率:', y_pre_pro)print('test.png的预测概率:', y_pre_pro[0, class_id])print('test.png的所属类别/手写体数字:', class_id)class_id = str(class_id)# # 显示cv2.namedWindow('img', 0)cv2.resizeWindow('img', 500, 500) # 自己设定窗口图片的大小cv2.putText(image, class_id, (2, 5), cv2.FONT_HERSHEY_SCRIPT_SIMPLEX, 0.2, (255, 0, 0), 1)cv2.imshow('img', image)cv2.waitKey()cv2.destroyAllWindows()
下面的test picture num指的是数据集中该数据的序号(0-59999),并不是值实际的数字。
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
input the number of test picture :2
input the test picture path:1.jpg
input the test picture num:1
1/1 [==============================] - 0s 156ms/step
test.png的预测概率: [[4.3549915e-07 4.7153802e-07 9.9998319e-01 5.7891691e-07 2.7986115e-085.3348625e-08 7.1938064e-09 1.4849566e-05 3.6678301e-07 2.2624316e-09]]
test.png的预测概率: 0.9999832
test.png的所属类别/手写体数字: 2
input the test picture path:2.jpg
input the test picture num:2
1/1 [==============================] - 0s 26ms/step
test.png的预测概率: [[1.4249144e-10 9.9994874e-01 6.1170212e-08 2.7543174e-09 1.9512597e-065.1548787e-09 1.5619334e-07 3.3457465e-07 4.5184272e-05 3.6284032e-06]]
test.png的预测概率: 0.99994874
test.png的所属类别/手写体数字: 1
相关文章:

python与深度学习(六):CNN和手写数字识别二
目录 1. 说明2. 手写数字识别的CNN模型测试2.1 导入相关库2.2 加载数据和模型2.3 设置保存图片的路径2.4 加载图片2.5 图片预处理2.6 对图片进行预测2.7 显示图片 3. 完整代码和显示结果4. 多张图片进行测试的完整代码以及结果 1. 说明 本篇文章是对上篇文章训练的模型进行测试…...

Linux使用教程
一、Linux命令基础 1、ls、ll命令——展示数据 ①ls命令——平铺展示数据 其中ls命令以平铺的方式展现数据 ②ll命令——列表展示数据 ll命令以列表的方式展现数据 -a选项,表示:all的意思,即列出全部文件(包含隐藏的文件/文件夹…...

项目名称:智能家居边缘网关项目
一,项目介绍 软件环境: C语言 硬件环境: STM32G030C8TX单片机开发板 开发工具: Linux平台GCC交叉编译环境以及ukeil (1)边缘网关概念 边缘网关是部署在网络边缘侧的网关,通过网络联接、协议转换等功能联接物理和数字世界,提供轻量化的联接管…...

SciencePub学术 | 物联网类重点SCIEEI征稿中
SciencePub学术 刊源推荐: 物联网类重点SCIE&EI征稿中!信息如下,录满为止: 一、期刊概况: 物联网类重点SCIE&EI 【期刊简介】IF:7.5-8.0,JCR1区,中科院1/2区TOP; 【出版社…...

EtherNet/IP转Modbus网关以连接AB PLC
本案例为西门子S7-1200 PLC通过捷米特Modbus转EtherNet/IP网关捷米特JM-EIP-RTU连接AB PLC的配置案例。 网关分别从ETHERNET/IP一侧和MODBUS一侧读写数据,存入各自的缓冲区,网关内部将缓冲区的数据进行交换,从而实现两边数据的传输。 网关做为…...

mysql用户添加
一、连接mysql服务 mysql -u root -p 二、查询用户表 use mysql ; SELECT User, Host FROM mysql.user; 三、新增用户并授权 Create USER dev4rw% IDENTIFIED WITH mysql_native_password BY 新密码; GRANT ALL PRIVILEGES ON *.* TO dev4rw% WITH GRANT OP…...

628. 三个数的最大乘积
628. 三个数的最大乘积 class Solution {public int maximumProduct(int[] nums) {Arrays.sort(nums); return Math.max(nums[nums.length-1]*nums[nums.length-2]*nums[nums.length-3],nums[0]*nums[1]*nums[nums.length-1]);} }...

linux驱动开发入门(学习记录)
2023.7.6及7.7 概述了解 一 1.驱动框架 2. 字符设备 块设备,存储相关 网络设备驱动 不一定属于某一种类型二 1.获取外设或传感器数据,控制外设,数据会提交给应用程序 2.编写一个驱动,及测试应用程序 app。驱动和应用完全分开 3.驱…...

SpringCloud-Alibaba之Sentinel熔断与限流
一、下载安装运行 http://localhost:8080进行访问 登录账号和密码均为sentinel 二、创建工程,并注册到nacos服务中心 依赖spring-cloud-starter-alibaba-nacos-discovery,spring-cloud-starter-alibaba-sentinel sentine-datasource-nacos (持久化)配置文件 se…...

深“扒”云原生高性能分布式文件系统JuiceFS
JuiceFS 是一款面向云原生设计的高性能分布式文件系统,在 Apache 2.0 开源协议下发布。提供完备的 POSIX 兼容性,可将几乎所有对象存储接入本地作为海量本地磁盘使用,亦可同时在跨平台、跨地区的不同主机上挂载读写。 JuiceFS 简介 JuiceFS…...

opencv-18 什么是色彩空间?
1.什么是色彩空间类型? 色彩空间类型,也称为颜色空间类型或色彩模型,是一种表示图像中颜色的方式。在计算机图形学和数字图像处理中,有许多种色彩空间类型,每种类型有不同的表达方式和特点。 常见的色彩空间类型包括&a…...
RedHat离线安装工具yum+gcc+pcre+zlib+openssl+openssh
RedHat离线安装工具yumgccpcrezlibopensslopenssh 【一】安装gcc-c(解决yum不可用问题)(1)问题描述(2)替换安装yum(3)安装gcc 【二】安装pcre【三】安装zlib【四】安装openssl【五】…...

Redis概述及安装、使用和管理
目录 一、NoSQL非关系型数据库 1.NoSQL概述 2.关系型数据库和非关系型数据库区别 (1)数据存储方式不同 (2)扩展方式不同 (3)对事务性的支持不同 3.非关系型数据库使用场景 二、Redis概述 1.简介 2…...
【算法第十一天7.25】二叉树前、中、后递归、非递归遍历
链接:力扣94-二叉树中序遍历 链接:力扣144-二叉树前序遍历 链接:力扣145-二叉树后序遍历 树的结构 * public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { thi…...

Linux搭建Promtail + Loki + Grafana 轻量日志监控系统
一、简介 日志监控告警系统,较为主流的是ELK(Elasticsearch 、 Logstash和Kibana核心套件构成),虽然优点是功能丰富,允许复杂的操作。但是,这些方案往往规模复杂,资源占用高,操作苦…...

[PyTorch][chapter 44][RNN]
简介 循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网…...
20230726----重返学习-vue3项目实战-知乎日报第3天-TS-简历
day-121-one-hundred-and-twenty-one-20230726-vue3项目实战-知乎日报第3天-TS-简历 vue3项目实战-知乎日报第3天 封装按钮组件 jsx函数式组件 只能做静态页面,内部没有方法让它自动更新。 封装第三方按钮-非计算属性版 封装第三方按钮-不使用计算属性 src/c…...
TypeScript 在前端开发中的应用实践
TypeScript 在前端开发中的应用实践 TypeScript 已经成为前端开发领域越来越多开发者的首选工具。它是一种静态类型的超集,由 Microsoft 推出,为开发者提供了强大的静态类型检查、面向对象编程和模块化开发的特性,解决了 JavaScript 的动态类…...

商业密码应用安全性评估量化评估规则2023版更新点
《商用密码应用安全性评估量化评估规则》(2023版)已于2023年7月发布,将在8月1日正式执行。相比较2021版,新版本有多处内容更新,具体包括5处微调和5处较大更新。 微调部分(5处) 序号2021版本202…...

【软件测试】单元测试工具---Junit详解
1.junit 1.1 junit是什么 JUnit是一个Java语言的单元测试框架。 虽然我们已经学习了selenium测试框架,但是有的时候测试用例很多,我们需要一个测试工具来管理这些测试用例,Junit就是一个很好的管理工具,简单来说Junit是一个针对…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...