当前位置: 首页 > news >正文

动手学深度学习——线性回归从零开始

  1. 生成数据集synthetic_data()
  2. 读取数据集data_iter()
  3. 初始化模型参数w, b
  4. 定义模型:线性回归模型linreg()
  5. 定义损失函数:均方损失squared_loss()
  6. 定义优化算法:梯度下降sgd()
  7. 进行训练:输出损失loss和估计误差
%matplotlib inline
import random
import torch
from d2l import torch as d2l# 生成数据集
def synthetic_data(w, b, num_examples): #@save"""生成y=Xw+b+噪声"""X = torch.normal(0, 1, (num_examples, len(w)))y = torch.matmul(X, w) + by += torch.normal(0, 0.01, y.shape)return X, y.reshape(-1, 1)true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)# 读取数据集
def data_iter(batch_size, features, labels):# 获取x中特征的长度,转换成列表,通过for循环进行批量生成num_examples = len(features)indices = list(range(num_examples))# 这些样本是随机读取的,没有特定的顺序random.shuffle(indices)for i in range(0, num_examples, batch_size):# 此时获取的是向量了,最后如果不足批量大小取最后剩余的batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])yield features[batch_indices], labels[batch_indices]# 初始化模型参数
w = torch.normal(0, 0.01, size=(2, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)# 定义模型:线性回归模型
def linreg(X, w, b):return torch.matmul(X, w) + b# 定义优化算法sgd
# lr:学习率
def sgd(params, lr, batch_size):with torch.no_grad():for param in params:param -= lr * param.grad / batch_sizeparam.grad.zero_()"""训练:1、读取批量样本获取预测2、计算损失,反向传播,存储每个参数的梯度3、调用优化算法sgd来更新模型参数4、输出每轮的损失
"""
lr = 0.03
num_epochs = 10
net = linreg
loss = squared_lossfor epoch in range(num_epochs):for X, y in data_iter(batch_size, features, labels):# X和y的小批量损失# net()返回y=X*w+b,loss()返回(y'-y)^2/2l = loss(net(X, w, b), y)\# 因为l形状是(batch_size, 1),而不是一个标量。L中的所有元素被加到一起# 并以此计算关于[w, b]的梯度l.sum().backward()# sgd():w = w - lr*w/batch_size# 使用参数的梯度更新参数sgd([w, b], lr, batch_size)with torch.no_grad():# loss(y_hat, y)# net(features, w, b)相当于y_hat,labels相当于ytrain_1 = loss(net(features, w, b), labels)print(f'epoch {epoch + 1}, loss{float(train_1.mean()):f}')# 输出w和b的估计误差
print(f'w的估计误差:{true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差:{true_b - b}')

相关文章:

动手学深度学习——线性回归从零开始

生成数据集synthetic_data()读取数据集data_iter()初始化模型参数w, b定义模型:线性回归模型linreg()定义损失函数:均方损失squared_loss()定义优化算法:梯度下降sgd()进行训练:输出损失loss和估计误差 %matplotlib inline impor…...

Redis缓存击穿

Redis缓存击穿是指在使用Redis作为缓存时,某个热点数据过期或不存在,导致大量请求直接打到后端存储系统(例如数据库),使得后端系统压力骤增,性能下降的情况。这种情况通常发生在热点数据失效的瞬间。 缓存…...

网络安全(黑客)自学的一些建议

1.选择方向 首先是选择方向的问题,网络安全是一个很宽泛的专业,包含的方向特别多。比如 web安全,系统安全,无线安全 ,二进制安全,运维安全,渗透测试,软件安全,IOT安全&a…...

全志F1C200S嵌入式驱动开发(基于usb otg的spi-nor镜像烧入)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 前面既然已经搞定了spi-nor驱动,那么下一步考虑的就是怎么从spi-nor flash上面加载uboot、kernel和rootfs。目前spi-nor就是一块白片,上面肯定什么都没有,那么这个时候,我们要做…...

如何恢复损坏/删除的 Word 文件

有关如何修复不可读的 Microsoft Word 文件或 Rich Text 文件中的文本的分步说明。这些说明有助于从损坏的*.doc、*.docx、*.dot、*.dotx、*.rtf文件(任何版本和大小)中提取文本,只需单击几下: 从此处下载奇客数据恢复 &#xff…...

【论文阅读】Feature Inference Attack on Shapley Values

摘要 研究背景 近年来,解释性机器学习逐渐成为一个热门的研究领域。解释性机器学习可以帮助我们理解机器学习模型是如何进行预测的,它可以提高模型的可信度和可解释性。Shapley值是一种解释机器学习模型预测结果的方法,它可以计算每个特征对…...

TDesign 中后台系统搭建

目录 1 模板安装2 启动项目3 添加页面总结 一般如果希望开发小程序,是要给使用的用户提供一套中后台系统来管理数据的。现在中后台系统开源项目也比较多,本篇我们介绍一个腾讯开源的TDesign模板。 1 模板安装 先要在电脑里安装好nodejs,搜索…...

Android 实现阅读用户协议的文字控件效果

开发中&#xff0c;经常要用到一些阅读隐私协议的场景&#xff0c;原生的textview控件很难做到在一个控件里有两个点击事件&#xff0c;那现在就来安利一个强大的组件——SpannableStringBuilder。 先看看效果&#xff1a; 直接上代码&#xff0c;布局文件&#xff1a; <Li…...

19.主题时钟

主题时钟 html部分 <div class"btn">黑色</div><div class"clock-container"><div class"time">21</div><div class"date">21</div><div class"clock"><div class&qu…...

ChatGPT在智能电子设备中的应用如何?

ChatGPT在智能电子设备中有着广泛的应用潜力&#xff0c;可以为电子设备提供更智能、更个性化的用户体验&#xff0c;并为用户提供更多便利和高效的功能和服务。智能电子设备是指通过集成计算机、传感器、网络和人工智能等技术&#xff0c;实现智能化的功能和交互的设备。ChatG…...

MGRE之OSPF实验

目录 题目&#xff1a; 步骤二&#xff1a;拓扑设计与地址规划​编辑 步骤三&#xff1a;IP地址配置 步骤四&#xff1a;缺省路由配置 步骤五&#xff1a;NAT的配置 步骤六&#xff1a;MGRE配置 中心站点R1配置 分支站点配置 中心站点R5 R1配置 分支站点配置 检测&…...

【Selenium+Pytest+allure报告生成自动化测试框架】附带项目源码和项目部署文档

目录 前言 【文章末尾给大家留下了大量的福利】 测试框架简介 首先管理时间 添加配置文件 conf.py config.ini 读取配置文件 记录操作日志 简单理解POM模型 简单学习元素定位 管理页面元素 封装Selenium基类 创建页面对象 简单了解Pytest pytest.ini 编写测试…...

如何负载均衡中的日志统一管理

详细部署步骤&#xff1a;将负载均衡中的日志统一管理 调研和规划 确定日志管理的需求和目标。调研可用的日志收集工具和中心化存储系统。 选择合适的日志收集工具 根据需求选择适合负载均衡环境的日志收集工具&#xff0c;如Logstash、Fluentd或Filebeat。 在负载均衡服务器…...

Java_26_Stream流

Stream 什么是Stream流&#xff1f; 在Java 8中&#xff0c;得益于Lambda所带来的函数式编程&#xff0c; 引入了一个全新的Stream流概念 &#xff0c;用于解决已有集合/数组类库有的弊端。 Stream流能解决什么问题? 可以解决已有集合类库或者数组API的弊端。 Stream认为集合…...

周四见 | 物流人的一周资讯

京东支付年活跃用户数超1.9亿 7月27日消息&#xff0c;京东科技发布2022年环境、社会及公司治理报告。报告显示&#xff0c;在推动社会公平方面&#xff0c;2022年京东科技帮助超207万家中小微企业实现数智化转型&#xff0c;为42万中小微企业提供贷款&#xff0c;节省融资成本…...

uniapp 即时通讯开发流程详解

今天我将为您详细介绍UniApp开发中的即时通讯流程。本文将向您展示如何在UniApp中实现即时通讯功能&#xff0c;为您的应用程序增添交互性和实时性。 1. 准备工作 在开始开发之前&#xff0c;确保您已完成以下准备工作&#xff1a; 确保您已经安装好UniApp开发环境&#xff…...

【Terraform学习】Terraform-docker部署快速入门(快速入门)

Terraform-docker部署快速入门 实验步骤 创建 EC2 IAM 角色 导航到IAM 在左侧菜单中&#xff0c;单击角色 。单击创建角色该按钮以创建新的 IAM 角色。 在创建角色部分&#xff0c;为角色选择可信实体类型&#xff1a; AWS 服务 使用案例:EC2 单击下一步 添加权限&#x…...

C# 全局响应Ctrl+Alt+鼠标右键

一、简述 某些应用&#xff0c;我们希望全局自定义热键。按键少了会和别的应用程序冲突&#xff0c;按键多了可定用户操作不变。因此我计划左手用CtrlAlt&#xff0c;右手用鼠标右键呼出我自定义的菜单。 我使用键盘和鼠标事件进行简单测试&#xff08;Ctrl鼠标右键&#xff…...

【Leetcode】54.螺旋矩阵

一、题目 1、题目描述 给你一个 m m m 行 n n n 列的矩阵 matrix,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。 示例1: 输入:matrix =...

怎样计算一个算法的复杂度?

分析一个算法主要看这个算法的执行需要多少机器资源。在各种机器资源中&#xff0c;时间和空间是两个最主要的方面。因此&#xff0c;在进行算法分析时&#xff0c;人们最关心的就是运行算法所要花费的时间和算法中使用的各种数据所占用的空间资源。算法所花费的时间通常称为时…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...