当前位置: 首页 > news >正文

21.2:象棋走马问题

请同学们自行搜索或者想象一个象棋的棋盘,
然后把整个棋盘放入第一象限,棋盘的最左下角是(0,0)位置
那么整个棋盘就是横坐标上9条线、纵坐标上10条线的区域
给你三个 参数 x,y,k
返回“马”从(0,0)位置出发,必须走k步
最后落在(x,y)上的方法数有多少种?

一:暴力方法

	/*** 暴力方法*/public static int jump(int a, int b, int k) {return process(a, b, k, 0, 0);}//返回落在a,b上并且走k步的方法数public static int process(int a, int b, int k, int x, int y) {if (k == 0) {return (x == a && y == b) ? 1 : 0;}//9行10列if (x < 0 || y < 0 || x > 9 || y > 8) {return 0;}int p1 = process(a, b, k - 1, x + 2, y + 1);int p2 = process(a, b, k - 1, x + 1, y + 2);int p3 = process(a, b, k - 1, x + 2, y - 1);int p4 = process(a, b, k - 1, x + 1, y - 2);int p5 = process(a, b, k - 1, x - 2, y + 1);int p6 = process(a, b, k - 1, x - 1, y + 2);int p7 = process(a, b, k - 1, x - 2, y - 1);int p8 = process(a, b, k - 1, x - 1, y - 2);return p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8;}

表格法

在这里插入图片描述

有三个变化的变量分别是:x,y,k 所以是一个三维的表格。

当层数是0的时候,只有(a,b,0)处是1,其他位置是0。

我还发现上一层是严格的依赖下一层的。上一层的每一个表格严格依赖下一层对应的八个表格(不越界的话)。

那填表的顺序就是由下往上一层一层的填表。

注意最后返回的是:dp[][][][] [ 0 ] [ 0 ] [ k ] 而不是 dp[][][][] [ a ] [ b ] [ k ] —> 表格法可以看成是递归的归过程。最终归的终点是最开始传入

进方法的起点位置。

本题可以想象一下:刚开始一定是(0,0,k) 之后向下层依赖,辐射到下一层的8个位置(不越界),之后下一层的8个位置继续向下层辐射8个位置,直到辐射到最底层,如果辐射到的最低层包含着(a,b,0)就算可以到达目标位置。

	/*** 迭代法*/public static int dp(int a, int b, int k) {//这里需要考虑k以及k==0时的情况,所以取k的范围是k+1个int[][][] dp = new int[10][9][k + 1];//依赖关系是:上层依赖下层,最终返回最上层,所以从下向上构建dp[a][b][0] = 1;for (int plie = 1; plie <= k; plie++) {//这一层的每个数都依赖下一层。for (int x = 0; x < 10; x++) {for (int y = 0; y < 9; y++) {int p1 = pick(dp, x + 2, y + 1, plie - 1);int p2 = pick(dp, x + 1, y + 2, plie - 1);int p3 = pick(dp, x + 2, y - 1, plie - 1);int p4 = pick(dp, x + 1, y - 2, plie - 1);int p5 = pick(dp, x - 2, y + 1, plie - 1);int p6 = pick(dp, x - 1, y + 2, plie - 1);int p7 = pick(dp, x - 2, y - 1, plie - 1);int p8 = pick(dp, x - 1, y - 2, plie - 1);dp[x][y][plie] = p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8;}}}return dp[0][0][k];//注意返回的是(0,0,k)这个坐标}public static int pick(int[][][] dp, int x, int y, int pile) {if (x < 0 || y < 0 || x > 9 || y > 8) {return 0;} else {return dp[x][y][pile];}}

相关文章:

21.2:象棋走马问题

请同学们自行搜索或者想象一个象棋的棋盘&#xff0c; 然后把整个棋盘放入第一象限&#xff0c;棋盘的最左下角是(0,0)位置 那么整个棋盘就是横坐标上9条线、纵坐标上10条线的区域 给你三个 参数 x&#xff0c;y&#xff0c;k 返回“马”从(0,0)位置出发&#xff0c;必须走k步 …...

【CSS】手写 Tooltip 提示组件

文章目录 效果示例代码实现 效果示例 代码实现 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>一颗不甘坠落的流星</title><style>body {padding: 120px;}.tooltip {position: relative;display: inline-blo…...

MySQL DDL语法

MySQL DDL语法 DDL简介 MySQL DDL&#xff08;Data Definition Language&#xff09;是用于定义和管理数据库结构的语言。它包括创建、修改和删除数据库、表、视图、索引和其他数据库对象的语句。DDL语法的重要性如下&#xff1a; 数据库结构定义&#xff1a;DDL语句用于创建…...

Git 绑定账号 和clone

一:环境: 下载安装完成Git,在桌面或文件夹下(在你将要保存代码的位置)右击可以看到Git Bash Here,点击可以进入黑窗口 二:配置公钥 1.查看当前状态(如果已绑定,且知道密码可以登陆,可以直接获取SSH公钥并配置即可拉取代码) git config --list 2.配置全局git用户名和邮箱 …...

ftp和sftp区别,以及xftp的使用

网上找链接找的很辛苦对吧&#xff01; 网上下载的破解版还不用。而且用没多久又说要更新了&#xff0c;又得重新找。 这下直接把官方免费获取链接发给你&#xff0c;就不用在被这种事情麻烦了。 家庭/学校免费 - NetSarang Website (xshell.com):家庭/学校免费 - NetSarang W…...

C++ 编程入门(一)—— Hello World

C 是什么环境搭建第一个 C 程序本篇结语 C 是什么 C 是一种面向对象的计算机程序设计语言&#xff0c;由美国 AT&T 贝尔实验室的 Bjarne Stroustrup 在 20 世纪 80 年代初期发明并实现&#xff08;最初这种语言被称作 “C with Classes” 带类的 C 语言&#xff09;。它是一…...

openlayers系列:加载arcgis和geoserver在线离线切片

https://www.freesion.com/article/1751396517/ 1.背景 有个项目需要使用openlayer加载各种服务上发布的数据&#xff0c;坐标系也不同&#xff0c;我们都知道openalyer默认可以加载EPAG:3857,要加载4490的坐标系的数据需要重新定义一下&#xff0c;之后再加载。一想起要重新…...

《人工智能安全》课程总体结构

1 课程内容 人工智能安全观&#xff1a;人工智能安全问题、安全属性、技术体系等基本问题进行了归纳整理。人工智能安全的主要数据处理方法&#xff0c;即非平衡数据分类、噪声数据处理和小样本学习。人工智能技术赋能网络空间安全攻击与防御&#xff1a;三个典型实例及攻击图…...

unity关于匀速移动某些值的方法

可能很多人会用到Verctor3.Lerp、Mathf.LerpUnclamped等等 这种其实不是匀速 看一下这个整体差不多的逻辑 public static float Lerp(float a, float b, float t){return a (b - a) * t;};这个逻辑就是&#xff0c;从a值到b值&#xff0c;返回一个a值加&#xff08;b值-a值&…...

解决VScode下载太慢的问题记录

最近突然想重新下载vscoded便携免安装版&#xff0c;发现下载很慢&#xff0c;于是乎查询一下&#xff0c;以便记录 下载地址 VScode官方网站&#xff1a; https://code.visualstudio.com/ 根据个人的需求选择下载&#xff0c;页面加载下载需要等一会&#xff0c; 然后就会…...

Gitlab服务器备份恢复及系统升级

居安思危&#xff0c;思则有备&#xff0c;有备无患。 基于此&#xff0c;申请了一个测试服务器&#xff0c;准备先安装同版本服务器&#xff0c;按照最新的数据进行恢复&#xff0c;然后再将现在的服务器升级到Gitlab的最新版本&#xff0c;记录一下完整的过程&#xff0c;以…...

docker入门讲解

目录 第 1 章 Docker核心概念与安装 为什么使用容器? Docker是什么 Docker设计目标 Docker基本组成 容器 vs 虚拟机 Docker应用场景 Linux 安装 Docker 第 2 章 Docker镜像管理 镜像是什么 镜像从哪里来? 镜像与容器联系 镜像常用管理命令 镜像存储核心技术:联…...

【Matlab】基于卷积神经网络的数据回归预测(Excel可直接替换数据))

【Matlab】基于卷积神经网络的数据回归预测(Excel可直接替换数据) 1.模型原理2.数学公式3.文件结构4.Excel数据5.分块代码6.完整代码7.运行结果1.模型原理 基于卷积神经网络(Convolutional Neural Network,CNN)的数据回归预测是一种常见的机器学习方法,适用于处理具有空…...

在Springboot集成Activiti工作流引擎-引入、调用,测试【基础讲解】

工作流 通过计算机对业务流程自动化执行管理 他主要解决的是使在多个参与者之间按照某种“预定义规则”自动进行传递稳定 信息或任务的过程 通俗来讲 业务上一个玩着的审批流程 比如请假&#xff0c;出差 外出采购等 工作流引擎就是来解决流程问题的 提高我们的工作效率 如果…...

Java书签 #解锁MyBatis的4种批量插入方式及ID返回姿势

1. 今日书签 项目开发中&#xff0c;我们经常会用到单条插入和批量插入。但是实际情况可能是&#xff0c;项目初期由于种种原因&#xff0c;在业务各处直接使用单条插入SQL进行开发&#xff08;未开启批处理&#xff09;&#xff0c;在后面的迭代中&#xff0c;系统性能问题渐…...

在react项目中如何引入国际化

react-i18next 在 React 项目中引入国际化&#xff08;Internationalization&#xff0c;简称 i18n&#xff09;可以使用第三方库来实现。其中&#xff0c;最常用且流行的国际化库是 react-i18next&#xff0c;它基于 i18next 实现&#xff0c;提供了方便易用的国际化功能。下…...

spring学习笔记十三

注解实现管理第三方Bean和为第三方Bean注入资源 1、添加pom坐标 <dependency><groupId>com.alibaba</groupId><artifactId>druid</artifactId><version>1.1.16</version></dependency> 2、SpringConfig配置类 Configuratio…...

react native 本地存储 AsyncStorage

An asynchronous, unencrypted, persistent, key-value storage system for React Native. Async Storage 只能用来储存字符串数据&#xff0c;所以为了去储存object类型的数据&#xff0c;得先进行序列化&#xff08;JSON.stringify()&#xff09;当你想要使用数据的时候&…...

Postgresql数据库中的时间类型汇总

PostgreSQL数据库有以下几种时间类型 1 日期 date&#xff1a;表示日期&#xff0c;格式为YYYY-MM-DD。 2 时间 time&#xff1a;表示时间&#xff0c;格式为HH:MI:SS。 3 日期和时间 timestamp&#xff1a;表示日期和时间&#xff0c;格式为YYYY-MM-DD HH:MI:SS。 4 带…...

算法刷题Day 51 最佳买卖股票时机含冷冻期+买卖股票的最佳时期含手续费

Day 51 动态规划 309. 最佳买卖股票时机含冷冻期 关键是要画出状态转移图 然后根据状态转移图来写状态转移方程 class Solution { public:int maxProfit(vector<int>& prices) {int len prices.size();vector<vector<int>> dp(len, vector<int&g…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...